Catalytic distillation

  • Joachim Richter
  • Andrzej Górak
  • Eugeny Y Kenig


Distillation Column Methyl Tertiary Butyl Ether Methyl Acetate Reflux Ratio Reactive Distillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.8 Literature

  1. Adrian T, Bessling B, Hallmann H, Niekerken V, Spindler A, Ohligschlager A and Rumpf M (1996) Vorrichtung zur Durchführung von Destillationen und heterogen katalysierten Reaktionen (Patent DE19869598A1). Deutschland.Google Scholar
  2. Agar D W (1999) “Multifunctional reactors: Old preconceptions and new dimensions.” Chem. Eng. Sci. 54: 1299–1305.CrossRefGoogle Scholar
  3. Agreda V H and Lilly R D (1990) Preparation of Ultra High Purity Methyl Acetate. United States Patent 4,939,294. USA, Eastman Kodak Company, Rochester, N.Y.Google Scholar
  4. Agreda V H and Partin L R (1984) Reactive Distillation Process For The Production Of Methyl Acetate. United States Patent 4,435,595. USA, Eastman Kodak Company, Rochester, N.Y.Google Scholar
  5. Agreda V H, Partin L R and Heise W H (1990) “High-Purity Methyl Acetate via Reactive Distillation.” Chem. Eng. Prog. 86: 40–46.Google Scholar
  6. Alejski K (1991) “Computation of the Reacting Distillation Column Using a Liquid Mixing Model on the Plates.” Comput. Chem. Eng. 15(5): 313–323.CrossRefGoogle Scholar
  7. Baerns M, Hofmann H and Renken A (1992) Chemische Reaktionstechnik. Stuttgart, Georg Thieme Verlag.Google Scholar
  8. Barreira M N, de Toledo E C V, Filho R M and das Graças E M (2003) “Use of Different Numerical Solution Approaches for a Three-Phase Slurry Catalytic Reactor Model.” Int. J. of Chem. Rec. Eng. 1: A53.Google Scholar
  9. Bart H J and Landschützer H (1996) “Heterogene Reaktivdestillation mit axialer Rückvermischung.” Chemie Ingenieur Technik: 944–946.Google Scholar
  10. Baur R, Taylor R and Krishna R (2004) “Dynamic behaviour of reactive distillation columns described by a nonequilibrium stage model.” Chemical Engineering Science 56: 2085–2102.CrossRefGoogle Scholar
  11. Bell R L (1972) “Residence Time and Fluid Mixing on Commercial Scale Sieve Trays.” AIChE Journal 18: 498–505.CrossRefGoogle Scholar
  12. Bennett D L and Grimm H J (1991) “Eddy Diffusivity for Distillation Sieve Trays.” AIChE Journal 37: 589–596.CrossRefGoogle Scholar
  13. Billet R (1995) Packed Towers. Weinheim, VCH.Google Scholar
  14. Bird R B, Stewart W E and Lightfood E N (2001) Transport Phenomena. New York, John Wiley and Sons.Google Scholar
  15. Bornscheuer U T (2002) “Microbial carboxyl esterases: classification, properties and application in biocatalysis.” Fems Microbiology Reviews 26(1): 73–81.CrossRefGoogle Scholar
  16. Bravo J L and Fair J R (1982) “Generalized Correlation for Mass Transfer in Packed Distillation Columns.” Ind. Eng. Chem. Process Des. Dev. 21: 162–170.CrossRefGoogle Scholar
  17. BriteEuram (1997) Technical Report: Transesterifcation of Methyl Acetate with Ethanol.Google Scholar
  18. Buchaly C, Lauterbach S, Kreis P and Górak A (2005) Membrane Assisted Reactive Distillation and Batch Reaction. Aachener Membrankolloquium, Aachen.Google Scholar
  19. Choudary B M, Kantam M L, Reddy C V, Aranganathan S, Santhi P L and Figueras F (2000) “Mg-Al-O-t-Bu hydrotalcite: a new and efficient heterogeneous catalyst for transesterification.” Journal of Molecular Catalysis A-Chemical 159(2): 411–416.CrossRefGoogle Scholar
  20. Comelli F and Francesconi R (1997) “Isothermal vapor-liquid equilibria measurements, excess molar enthalpies, and excess molar volumes of dimethyl carbonate plus methanol, plus ethanol, and plus propan-1-ol at 313.15 K.” Journal of Chemical and Engineering Data 42(4): 705–709.CrossRefGoogle Scholar
  21. Comelli F, Francesconi R and Castellari C (2001) “Excess molar enthalpies and excess molar volumes of binary mixtures containing dialkyl carbonates plus pine resins at (298.15 and 313.15) K.” Journal of Chemical and Engineering Data 46(1): 63–68.CrossRefGoogle Scholar
  22. Comelli F, Francesconi R and Ottani S (1996) “Isothermal vapor-liquid equilibria of dimethyl carbonate plus diethyl carbonate in the range (313.15 to 353.15) K.” Journal of Chemical and Engineering Data 41(3): 534–536.CrossRefGoogle Scholar
  23. Comelli F, Ottani S and Francesconi R (1997) “Excess molar enthalpies and excess molar volumes of dimethyl carbonate plus seven alkyl acetates at 298.15 K.” Journal of Chemical and Engineering Data 42(6): 1208–1211.CrossRefGoogle Scholar
  24. Cornils B and Herrmann W A (1996) Applied Homogeneous Catalysis with Organometallic Compounds. Weinheim, VCH.Google Scholar
  25. Danckwerts P V (1953) “Continuous Flow Systems-Distribution of Residence Times.” Chem. Eng. Sci. 2: 1–13.CrossRefGoogle Scholar
  26. Danckwerts P V (1970) Gas-Liquid Reactions. New York, McGraw-Hill.Google Scholar
  27. Dartt C B and Davis M E (1994) “Applications of Zeolites to Fine Chemicals Synthesis.” Catalysis Today 19(1): 151–186.CrossRefGoogle Scholar
  28. Davies B and Jeffreys G V (1973) “The Continuous Trans-Esterification of Ethyl Alcohol and Butyl Acetate in a Sieve Plate Column-Part III: Trans-Esterification in a Six Plate Sieve Plate Column.” Trans. Instn Chem. Engrs 51: 275–280.Google Scholar
  29. DECHEMA (2005) DETHERM-Thermophysical properties of pure substances & mixtures. Frankfurt a. M., Germany, DECHEMA e.V. 2005.Google Scholar
  30. DeGarmo J L, Parulekar V N and Pinjala V (1992) “Consider Reactive Distillation.” Chem. Eng. Prog. 88(3): 42–50.Google Scholar
  31. Doherty M F and Malone M F (2001) Conceptual Design of Distillation Systems. New York, McGraw Hill.Google Scholar
  32. Doraiswamy L L and Sharma M. M (1984) Heterogeneous Reactions: Analysis, Examples and Reactor Design. New York.Google Scholar
  33. Drauz K and Waldmann H (1995) Enzyme Catalysis in Organic Synthesis. Weinheim, VCH.Google Scholar
  34. Egorov Y, Menter F, Kloeker M and Kenig E Y (2002) Detaillierte CFD Berechnung der Hydrodynamik in strukturierten Packungen. GVCFachausschuesse “Waerme-und Stoffaustausch” und “CFD-Computational Fluid Dynamics”. Weimar.Google Scholar
  35. Egorov Y, Menter F, Kloeker M and Kenig E Y (2005) “On the combination of CFD and rate-based modelling in the simulation of reactive separation processes.” Chemical Engineering and Processing 44: 631–644.CrossRefGoogle Scholar
  36. Ellenberger J and Krishna R (1999) “Counter-current Operation of Structure Catalytically Packed Distillation Columns: Pressure Drop, Holdup and Mixing.” Chem. Eng. Sci. 54: 1339–1345.CrossRefGoogle Scholar
  37. Figueras F, Tichit D, Naciri M B and Ruiz R (1998) “Selective Aldolisation of Acetone Into Diacetone Alcohol Using Hydrotalcites as Catalysts.” Chemical Industries (Dekker) 75: 37–49.Google Scholar
  38. Flory P J (1941) J. Chem. Phys. 9: 660.CrossRefGoogle Scholar
  39. Flory P J (1942) J. Chem. Phys. 10: 51.CrossRefGoogle Scholar
  40. Francesconi R and Comelli F (1997) “Excess molar enthalpies, densities, and excess molar volumes of diethyl carbonate in binary mixtures with seven nalkanols at 298.15 K.” Journal of Chemical and Engineering Data 42(1): 45–48.CrossRefGoogle Scholar
  41. Froment G F and Bischoff K B (1990) Chemical Reactor Analysis and Design. New York, John Wiley & Sons Inc.Google Scholar
  42. Fuchigami Y (1990) “Hydrolysis of Methyl Acetate in Distillatiom Column Packed with Reactive Packing of Ion Exchange Resin.” Journal of Chemical Engineering of Japan 23(3): 354–359.CrossRefGoogle Scholar
  43. Gelbein A P and Buchholz M (2000) Process and Structure For Effecting Catalytic Reactions in Distillation Structure (EP 0428265B2).Google Scholar
  44. Giessler S, Danilov R Y, Pisarenko R Y, Serafimov L A, Hasebe S and Hashimoto I (1999) “Feasible Separation Modes for Various Reactive Distillation Systems.” Ind. Eng. Chem. Res. 38: 4060–4067.CrossRefGoogle Scholar
  45. Gmehling J, Menke J, Krafczyk J and Fischer K (1994) Azeotropic Data (Part 1& 2), VCH Verlagsgesellschaft mbH.Google Scholar
  46. Gmehling J, Onken U, Arlt W, Grenzheuser P, Weidlich U and Kolbe B (1977–1984) Chemistry Data Series. Frankfurt a.M., DECHEMA.Google Scholar
  47. Gorak A (1995) Simulation thermischer Trennverfahren fluider Vielkomponentengemische. Prozesssimulation. Schuler H, Wiley-VCH: 349–408.Google Scholar
  48. Górak A and Kreul L (2004) Packung für Stoffaustausch-Kolonnen. EP.Google Scholar
  49. Górak A, Kreul L U and Skowronski M (1998) Strukturierte Mehrzweckpackung. Deutsches Patent 19701045 A1.Google Scholar
  50. Götze L and Bailer O (2000) “Katalysator-Sandwich-Reaktivdestillation mit einer neuen strukturierten Packung.” Chemie Technik 29(2): 42–45.Google Scholar
  51. Götze L, Bailer O, Moritz P and von Scala C (2000) “KATAPAK-SP: Baukastensystem für die Reaktivrektifikation.” Chemie Ingenieur Technik 72(9): 1053–1054.CrossRefGoogle Scholar
  52. Hangx G, Kwant G, Maessen H, Markusse A P and Urseanu M I (2001) Reaction Kinetics of the Esterification of Ethanol and Acetic Acid Towards Ethyl Acetate, Intelligent Column Internals for Reactive Separations (INTINT), Technical Report to the European Commission:
  53. Hayden J G and O’Connell J P (1975) “A Generalized Method for Predicting Second Virial Coefficients.” Ind. Eng. Chem. Process Des. Dev. 14: 209–216.CrossRefGoogle Scholar
  54. Heijnen J H M, de Bruijn V G, van den Broeke L J P and Keurentjes J T F (2003) “Micellar catalysis for selective epoxidations of linear alkenes.” Chemical Engineering and Processing 42(3): 223–230.CrossRefGoogle Scholar
  55. Higler A, Krishna R and Taylor R (1999) “Nonequilibrium Cell Model for Multicomponent (Reactive) Separation Processes.” AiChE Journal 45(11):2357–2370.CrossRefGoogle Scholar
  56. Higler A, R. Krishna and Taylor R (2000) “Nonequilibrium Modeling of Reactive Distillation: A Dusty Fluid Model for Heterogeneously Catalysed Processes.” Ind.Eng. Chem. Res. 39: 1596–1607.CrossRefGoogle Scholar
  57. Hoffmann A and Górak A (2000) Methyl-Acetate via Catalytic Distillation: Characteristics of MULTIPAK and their Influence on the Process Performance. International Congress of Chemical and Process Engineering (CHISA). Prag.Google Scholar
  58. Hoffmann A, Noeres C and Górak A (2004) “Scale-Up of Reactive Distillation Columns with Catalytic Packings.” Chem. Eng. Process. 43: 383–395.CrossRefGoogle Scholar
  59. Huggins M L (1941) Chemical Phys. 9: 440.CrossRefGoogle Scholar
  60. Huggins M L (1942) J. Am. Chem. Soc. 64: 1712.CrossRefGoogle Scholar
  61. Illiuta I, Larachi F and Grandjean B P A (1999) “Residence Time, Mass Transfer and Back Mixing of the Liquid in Trickle Flow Reactors Containing Porous Particles.” Chem. Eng. Sci. 54: 4099–4109.CrossRefGoogle Scholar
  62. Jacobsson K, Pyhälathi A, Pakkanen S, Keskinen K and Aittamaa J (2001) Modeling of a Configuration Combining Distillation and Reaction in a Side Reactor. International Symposium on Multifunctional Reactors (ISMR-2), Nürnberg, Germany.Google Scholar
  63. Johnson K H and Dallas A B (1994) Catalytic Distillation Structure. US.Google Scholar
  64. Jones E M J (1985) Contact Structure for Use In Catalytic Distillation. US, Chemical Research & Licensing Company, Houston, TX.Google Scholar
  65. Judzis A (2004) Advances in Process Intensification through Multifunctional Reactor Engineering. Energy U S D o. 2005.Google Scholar
  66. Kenig E, Klöker M, Noeres C, Nijhuis T A, Beers A E W, Kapteijn F and Moulijn J A (2000) Detailed Rate-Based Model Including Extended Hydrodynamics Description (Deliverable 7), INTINT.Google Scholar
  67. Kenig E Y, Bäder H, Górak A, Beßling B, Adrian T and Schoenmakers H (2001) “Investigation of Ethyl Acetate Reactive Distillation Process.” Chem. Eng. Sci. 56: 6185–6193.CrossRefGoogle Scholar
  68. Kenig E Y, Górak A and Bart H-J (2004) Reactive Separations in Fluid Systems. Re-Engineering the Chemical Processing Plant: Process Intensification. Stankiewicz A a.Moulijn J A. New York, Marcel Dekker, Inc.: 309–377.Google Scholar
  69. Kenig E Y, Kloeker M, Egorov Y, Menter F and Górak A (2001) Towards Improvement of Reactive Separation Performance Using Computational Fluid Dynamics. ISMR-2, 2nd International Symposium on Multifunctional Reactors. Nuernberg.Google Scholar
  70. Kenig E Y, Kloeker M, Egorov Y, Menter F and Górak A (2001) “Towards Improvement of Reactive Separation Performance Using Computational Fluid Dynamics.” Chemie-Ingenieur-Technik 73(6): 773.Google Scholar
  71. Klöker M, Kenig E Y, Górak A, Egorov Y and Menter F (2003) Improved Design of Reactive Separation Internals via CFD and Process Simulation. ACHEMA 2003. Frankfurt / Main.Google Scholar
  72. Klöker M, Kenig E Y, Górak A, Franczek K, Salacki W and Orlikowski W (2003) Experimental and Theoretical Studies of the TAME Synthesis by Reactive Distillation. European Symposium on Computer Aided Process Engineering — 13, Lappeenranta, Finland, Elsevier Science B.V.Google Scholar
  73. Klöker M, Kenig E Y, Górak A, Markusse A P, Kwant G, Götze L and Moritz P (2002) Investigation of Different Column Configurations for the Ethyl Acetate Synthesis via Reactive Distillation. Distillation and Absorption, Baden Baden, Germany.Google Scholar
  74. Klöker M, Kenig E Y, Górak A, Markusse A P, Kwant G and Moritz P (2004) “Investigation of Different Column Configurations for the Ethyl Acetate Synthesis via Reactive Distillation.” Chem. Eng. Process. 43: 791–801.CrossRefGoogle Scholar
  75. Klöker M, Kenig E Y, Hoffmann A, Kreis P and Górak A (2005) “Rate-based modelling and simulation of reactive separations in gas/vapour-liquid systems.” Chemical Engineering and Processing 44: 617–629.CrossRefGoogle Scholar
  76. Klöker M, Kenig E Y, Piechota R, Burghoff S and Egorov Y (2004) “CFD-gestützte Untersuchungen von Hydrodynamik und Stofftransport in Katalysatorschüttungen.” Chem. Ing. Tech. 76: 236–242.CrossRefGoogle Scholar
  77. Klöker M, Kenig E Y, Piechota R, Burghoff S and Egorov Y (2005) “CFD-based Study on Hydrodynamics and Mass Transfer in Fixed Catalyst Beds.” Chemical Engineering and Technology 28(1): 31–36.CrossRefGoogle Scholar
  78. Kolena J, Lederer J, Moravek P, Hanika J, Smejkal Q and Skala D (1999) Zpusob vyroby etylacetatu a zarizeni k provadeni tohoto zpusobu (Process for the production of ethyl acetate and apparatus for performing the process, Cz PV 3635–99). Czech Republic.Google Scholar
  79. Kolodziej A, Jaroszynski M and Bylica I (2003) “Mass transfer and hydraulics for KATAPAK-S.” Chemical Engineering and Processing 43(3): 457–464.CrossRefGoogle Scholar
  80. Kolodziej A, Jaroszynski M, Salacki W, Orlikowski W, Fraczek K, Klöker M, Kenig E Y and Górak A (2004) “Catalytic Distillation for the TAME Synthesis with Structured Catalytic Packings.” Chem. Eng. Res. Des. 82: 175–184.CrossRefGoogle Scholar
  81. Kooijman H (1995) Dynamic Nonequilibrium Column Simulation. Chemical Engineering. Potsdam, N.Y., Clarkson University.Google Scholar
  82. Kreft A and Zuber A (1978) “On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions.” Chem. Eng. Sci. 33: 1471–1480.CrossRefGoogle Scholar
  83. Kreul L U, Górak A, Dittrich C and Barton P I (1998) “Dynamic Catalytic Distillation: Advanced Simulation and Experimental Validation.” Computers and Chemical Engineering 22(Supplement 1): S371–S378.CrossRefGoogle Scholar
  84. Krishna R and Standart G L (1979) “Mass and Energy Transfer in Multicomponent Systems.” Chem. Eng. Com. 3: 201.CrossRefGoogle Scholar
  85. Kunz U (1998) Entwicklung neuartiger Polymer / Träger — Ionenaustauscher als Katalysatoren für chemische Reaktionen in Füllkörperkolonnen. Clausthal — Zellerfeld, Papierflieger Verlag.Google Scholar
  86. Kunz U and Hoffmann U (1995) Perparation of Catalytic Polymer/Ceramic Ionexchange Packings for Reactive Distillation Columns. Preparation of Catalysts VI. Ponclet G, Elsevier Science B.V.: 299–308.Google Scholar
  87. Larachi F, Petre C F, Iliuta I and Grandjean B (2003) “Tailoring the pressure drop of structured packings through CFD simulations.” Chemical Engineering and Processing 42(7): 535–541.CrossRefGoogle Scholar
  88. Lebas E, Jullian S, Travers C, Capron P, Joly J-F and Thery M (1997) Process for the isomerisation of paraffins by reactive distillation (EP 000000787786A1), Inst. Francais du Petrol.Google Scholar
  89. Leet W A and Kulprathipanja S (2002) Reactive Separation Processes. Reactive Separation Processes. Kulprathipanja S. London, Taylor & Francis: 1–16.Google Scholar
  90. Linnekoski J A and Rihko-Struckmann L K (1999) “Simultaneous Isomerisation and Etherification of isoamylenes.” Ind. Eng. Chem. Res. 38: 4563–4570.CrossRefGoogle Scholar
  91. Loning S, Horst C and Hoffmann U (2000) “Theoretical investigations on the quaternary system n-butanol, butyl acetate, acetic acid and water.” Chemical Engineering & Technology 23(9): 789–794.CrossRefGoogle Scholar
  92. Luo H P and Xiao W D (2001) “A reactive distillation process for a cascade and azeotropic reaction system: Carbonylation of ethanol with dimethyl carbonate.” Chemical Engineering Science 56(2): 403–410.CrossRefGoogle Scholar
  93. Luo H P, Xiao W D and Zhu K H (2000) “Isobaric vapor-liquid equilibria of alkyl carbonates with alcohols.” Fluid Phase Equilibria 175(1–2): 91–105.CrossRefGoogle Scholar
  94. Luo H P, Zhou J H, Xiao W D and Zhu K H (2001) “Isobaric vapor-liquid equilibria of binary mixtures containing dimethyl carbonate under atmospheric pressure.” Journal of Chemical and Engineering Data 46(4): 842–845.CrossRefGoogle Scholar
  95. Luo H P, Zhou J H, Xiao W D and Zhu K H (2002) “CORRECTION-Isobaric Vapor-Liquid Equilibria of Binary Mixtures Containing Dimethyl Carbonate under Atmospheric Pressure.” J. Chem. Eng. Data 47: 113.CrossRefGoogle Scholar
  96. Mackowiak J (2003) Fluiddynamik von Füllkörpern und Packungen. Grundlagen der Kolonnenauslegung. Berlin Heidelberg, Springer.Google Scholar
  97. Mazzotti M N, B.; Gelosa, D.; Kruglov, A.; Morbidelli, M. (1997) “Kinetics of liquid-phase esterification catalyzed by acidic resins.” Ind. Eng. Chem. Res. 36: 3–10.CrossRefGoogle Scholar
  98. Michelsen M L (1994) “The axial dispersion model and orthogonal collocation.” Chem. Eng. Sci. 49: 3675–3676.CrossRefGoogle Scholar
  99. Mohl K-D, Kienle A and Hoffman U (1999) “Steady-state multiplicities in reactive distillation columns for the production of fuel ethers MTBE and TAME: theoretical analysis and experimental verification.” Chem. Eng. Sci. 54: 1029–1043.CrossRefGoogle Scholar
  100. Mohl K D, Kienle A, Sundmacher K and Gilles E D (2001) “A theoretical study of kinetic instabilities in catalytic distillation processes: influence of transport limitations inside the catalyst.” Chemical Engineering Science 56(18): 5239–5254.CrossRefGoogle Scholar
  101. Moritz P (2002) Product Information ‘Ethyl Acetate Production by Reactive Distillation’. Brochure of Sulzer Chemtech Ltd.Google Scholar
  102. Moritz P and Hasse H (1999) “Fluid Dynamics in Reative Distillation Packing Katapak-S.” Chem. Eng. Sci. 54: 1367–1374.CrossRefGoogle Scholar
  103. Nigam K D P, Illiuta I and Larachi F (2002) “Liquid Back-Mixing and Mass Transfer Effects in Trickle-Bed Reactors Filled with Porous Catalyst Particles.” Chem. Eng. Process. 41: 365–371.CrossRefGoogle Scholar
  104. Nijhuis T A, Kreutzer M T, A.C.J. R, Kapteijn F and Moulijn J A (2001) “Monolithic catalysts as efficient three-phase reactors.” Chemical Engineering Science 56: 823–829.CrossRefGoogle Scholar
  105. Nocca J L, Leonard J, Gaillard J F and Amigues P (1991) Apparatus for Reactive Distillation. US.Google Scholar
  106. Noeres C (2003) Catalytic Distillation: Dynamic Modelling, Simulation and Experimental Validation. Department of Biochemical and Chemical Engineering. Dortmund, University of Dortmund.Google Scholar
  107. Noeres C, Hoffmann A and Gorak A (2002) “Reactive distillation: Non-ideal flow behaviour of the liquid phase in structured catalytic packings.” Chemical Engineering Science 57(9): 1545–1549.CrossRefGoogle Scholar
  108. Noeres C, Kenig E Y and Górak A (2003) “Modelling of Reactive Separation Processes: Reactive Absorption and Reactive Distillation.” Chem. Eng. Process. 42: 157–178.CrossRefGoogle Scholar
  109. Nothnagel K H, Abrams D S and Prausnitz J M (1973) “Generalized Correlation for Fugacity Coefficients in Mixtures at Moderate Pressures.” Ind. Eng. Chem. Process Des. Dev. 12(1).Google Scholar
  110. Petre C F, Larachi F, Iliuta I and Grandjean P A (2003) “Pressure Drop Through Structured Packings: Breakdown into the Contributing Mechanisms by CFD modeling.” Chem. Eng. Sci. 58: 163–177.CrossRefGoogle Scholar
  111. Piironen M, Haario H and Turunen I (2001) “Modelling of Katapak Reactor for Hydrogenation of Anthraquinones.” Chem. Eng. Sci. 56: 859–864.CrossRefGoogle Scholar
  112. Pöpken T (2000) Reaktive Rektifikation unter besonderer Berücksichtigung der Reaktionskinetik am Beispiel von Veresterungsreaktionen. Oldenburg, University of Oldenburg.Google Scholar
  113. Pöpken T, Steinigeweg S and Gmehling J (2001) “Synthesis and Hydrolysis of Methyl Acetate by Reactive Distillation Using Structured Catalytic Packings: Experiments and Simulation.” Industrial Engineering Chemistry Research 40(6): 1566–1574.CrossRefGoogle Scholar
  114. Qi Z W, Sundmacher K, Stein E, Kienle A and Kolah A (2002) “Reactive separation of isobutene from C4 crack fractions by catalytic distillation processes.” Separation and Purification Technology 26(2–3): 147–163.CrossRefGoogle Scholar
  115. Reid R C, Prausnitz J M and Poling B E (1987) The Properties of Gases and Liquids. New York, McGraw-Hill.Google Scholar
  116. Richter J and Górak A (2004) Katalytische Rektifikation für ein System mit Folge-und Nebenreaktionen. DECHEMA/GVC-Jahrestagung. Karlsruhe.Google Scholar
  117. Rodrigues A, Canosa J, Dominguez A and Tojo J (2004) “Viscosities of dimethyl carbonate with alcohols at several temperatures UNIFAC-VISCO interaction parameters (-OCOO-/alcohol=.” Fluid Phase Equilibria 216: 167–174.CrossRefGoogle Scholar
  118. Rodriguez A, Canosa J, Dominguez A and Tojo J (2002) “Isobaric vapour-liquid equilibria of dimethyl carbonate with alkanes and cyclohexane at 101.3 kPa.” Fluid Phase Equilibria 198(1): 95–109.CrossRefGoogle Scholar
  119. Rodriguez A, Canosa J, Dominguez A and Tojo J (2003) “Isobaric phase equilibria of diethyl carbonate with five alcohols at 101.3 kPa.” Journal of Chemical and Engineering Data 48(1): 86–91.CrossRefGoogle Scholar
  120. Schembecker G and Tlatlik S (2003) “Process synthesis for reactive separations.” Chemical Engineering and Processing 42(3): 179–189.CrossRefGoogle Scholar
  121. Schildhauer T J, Kapteijn F and Moulijn J A (2005) “Reactive Stripping in Pilot Scale Monolith Reactors-Application to Esterification.” Chemical Engineering and Processing 44(6): 695–699.CrossRefGoogle Scholar
  122. Schmitt M, Hasse H, Althaus K, Schoenmakers H, Götze L and Moritz P (2004) “Synthesis of n-Hexyl Acetate by Reactive Distillation.” Chem. Eng. Process. 43: 397–409.CrossRefGoogle Scholar
  123. Schneider R, Noeres C, Kreul L U and Gorak A (2001) “Dynamic modeling and simulation of reactive batch distillation.” Computers & Chemical Engineering 25(1): 169–176.CrossRefGoogle Scholar
  124. Schoenmakers H G and Bessling B (2003) “Reactive and catalytic distillation from an industrial perspective.” Chemical Engineering and Processing 42(3): 145–155.CrossRefGoogle Scholar
  125. Schuchardt U, Sercheli R and Vargas R M (1998) “Transesterification of vegetable oils: a review.” Journal of the Brazilian Chemical Society 9(3): 199–210.CrossRefGoogle Scholar
  126. Seader J D and Henley E J (2005) Separation Process Principles, John Wiley & Sons.Google Scholar
  127. Shah Y T, Stiegel G J and Sharma M M (1978) “Backmixing in Gas-Liquid Reactors.” AIChE Journal 24(24): 369–400.CrossRefGoogle Scholar
  128. Shaikh A A G and Sivaram S (1996) “Organic carbonates.” Chemical Reviews 96(3): 951–976.CrossRefGoogle Scholar
  129. Shelden R and Stringaro J-P (1995) Vorrichtung zur Durchführung katalysierter Reaktionen (EP 0396650B1). European Union.Google Scholar
  130. Sheldon R A and van Bekkum H (2001) Fine Chemicals through Heterogeneous Catalysis. Weinheim, VCH.Google Scholar
  131. Shoemaker J D and Jones J, E.M. (1987) “Cumene by Catalytic Distillation.” Hydrocarbon Processing(June): 57–58.Google Scholar
  132. Smith L A J (1984) Catalytic distillation structure. U.S.A.Google Scholar
  133. Song W, Venimadhavan G, Manning J M, Malone M F and Doherty M F (1998) “Measurement of Residue Curve Maps and Heterogeneous Kinetics in Methyl Acetate Synthesis.” Ind. End. Chem. Res. 37(5): 1917–1928.CrossRefGoogle Scholar
  134. Sorel E (1893) La rectification de l’alcool. Paris, Gauthier-Villars et fils.Google Scholar
  135. SRI (1999) Chemical Economics Handbook, SRI International.Google Scholar
  136. Steinigeweg S (2003) Zur Entwicklung von Reaktivrektifikationsprozessen am Beispiel gleichgewichtslimitierter Reaktionen. Oldenburg, Car-von-Ossietzky-Universität.Google Scholar
  137. Steinigeweg S and Gmehling J (2002) “n-Butyl Acetate Synthesis via Reactive Distillation: Thermodynamic Aspects, Reaction Kinetics, Pilot-Plant Experiments, and Simulation Studies.” Ind.Eng. Chem. Res. 41: 5483–5490.CrossRefGoogle Scholar
  138. Steinigeweg S and Gmehling J (2003) “Transesterification processes by combination of reactive distillation and pervaporation.” Chemical Engineering and Processing 43(3): 447–456.CrossRefGoogle Scholar
  139. Stewart W E and Prober R (1964) “Matrix Calculation of Multicomponent Mass Transfer in Isothermal Systems.” Ind. Eng. Chem. Fundam. 4: 224.CrossRefGoogle Scholar
  140. Stichlmair J and Frey T (1998) “Prozesse der Reaktivdestillation.” Chemie Ingenieur Technik 70(12): 1507–1516.CrossRefGoogle Scholar
  141. Stitt E H (2001) “Reactive Distillation-A Panacea or a Solution Looking for a Problem? A Case Study Based Evaluation.” Chem. Ing. Tech. 73(6): 767.CrossRefGoogle Scholar
  142. Stitt E H (2003) Multifunctional Reactors? Up to a Point Lord Copper. International Symposium on Multifunctional Reactors (ISMR-3) / Colloquium on Chemical Reaction Engineering (CCRE-18), Bath, U.K.Google Scholar
  143. Sulzer (2000) Produktinformation KATAPAK.Google Scholar
  144. Taylor R and Krishna R (1993) Multicomponent Mass Transfer. New York, John Wiley & Sons, Inc.Google Scholar
  145. Taylor R and Krishna R (2000) “Modelling reactive distillation.” Chem. Eng. Sci.(55): 5183–5229.CrossRefGoogle Scholar
  146. Taylor R, Krishna R and Kooijman H A (2003) “Real World Modeling of Distillation.” Chemical Engineering Progress 99(7): 28–39.Google Scholar
  147. Thiel C (1997) Modellbildung, Simulation, Design und experimentelle Validierung von heterogen katalysierten Reaktivdestillationsprozessen zur Synthese der Kraftstoffether MTBE, ETBE und TAME. Fakultät für Bergbau, Hüttenwesen und Maschinenwesen. Clausthal-Zellerfeld, Technische Universität Clausthal: 121.Google Scholar
  148. Tlatlik S (2004) Beitrag zur Prozesssynthese integrierter Reaktions-und Trennoperationen. Department of Biochemical and Chemical Engineering. Dortmund, University of Dortmund.Google Scholar
  149. Toor H L (1964) “Prediction of Efficiences and Mass Transfer on a Stage with Multicomponent Systems.” AIChE J. 10: 545.CrossRefGoogle Scholar
  150. Toor H L (1964) “Solution of the Linearized Equations of Multicomponent Mass Transfer.” AICHE Journal 10: 545–547.CrossRefGoogle Scholar
  151. Towler G T and Frey S J (2001) Reactive Distillation. Reactive Separation Processes. Kulprathipanja S. London, Taylor and Francis.Google Scholar
  152. Tundo P (2001) “New developments in dimethyl carbonate chemistry.” Pure and Applied Chemistry 73(7): 1117–1124.CrossRefGoogle Scholar
  153. Tundo P and Selva M (2002) “The chemistry of dimethyl carbonate.” Accounts of Chemical Research 35(9): 706–716.CrossRefGoogle Scholar
  154. Ullmann (1985) Ullmann’s Encyclopedia of Industrial Chemistry, 5th edition edition. Weinheim, Wiley-VCH.Google Scholar
  155. van Baten J M and Krishna R (2002) “Gas and Liquid Phase Mass Transfer within KATAPAK-S Structures studied using CFD Simulations.” Chem. Eng. Sci. 57: 1531–1536.CrossRefGoogle Scholar
  156. van Hasselt B W, Calis H P A, Sie S T and van den Bleek C M (1999) “Liquid hold-up in the three-levels-of-porosity reactor.” Chem. Ing. Sci. 54: 1405–1411.CrossRefGoogle Scholar
  157. van Swaaij W P M, Charpentier J C and Villermaux J (1969) “Residence Time Distribution in the Liquid Phase of Trickle Flow in Packed Columns.” Chem. Eng. Sci. 24: 1083–1095.CrossRefGoogle Scholar
  158. Wang S-J, Wong D S H and Lee E-K (2003) “Control of a Reactive Distillation Column in the Kinetic Regime for the Synthesis of n-Butyl Acetate.” Ind. Eng. Chem. Res. 42: 5182–5194.CrossRefGoogle Scholar
  159. Weitkamp J, Hunger M and Rymsa U (2001) “Base catalysis on microporous and mesoporous materials: recent progress and perspectives.” Microporous and Mesoporous Materials 48(1–3): 255–270.CrossRefGoogle Scholar
  160. Wesselingh J A (1990) Mass Transfer. Chichester, West Sussex (England), Ellis Horwood.Google Scholar
  161. Wesselingh J A and Krishna R (1990) Mass Transfer, Ellis Horwood.Google Scholar
  162. Wu K-C and Lin C-T (1999) Catalytic processes for the preparation of acetic esters. U.S. 5,998,658.Google Scholar
  163. Yeoman N, Pinaire R, Ulowetz M A, Nace T P and Furese D A (1994) Method and Apparatus for Concurrent Reaction with Distillation. WO 94/08679.Google Scholar
  164. Yuxiang Z and Xien X (1992) “Study on catalytic distillation processes-pt. II: simulation of catalytic distillation processes (quasi-homogeneous and rate-based model).” Trans. IChemE 70: 465–470.Google Scholar
  165. Zheng Y, Flora T.T. Ng and Rempel G L (2001) “Catalitic Distillation: A Three-Phase Nonequilibrium Model for the Simulation of the Aldol Condensation of Acetone.” Ind.Eng. Chem. Res. 40: 5342–5349.CrossRefGoogle Scholar
  166. Zheng Y, Rempel G L and Ng F T T (2003) “Modelling of the Catalytic Distillation Process for the Synthesis of Ethyl Cellosolve Using a Three-Phase Nonequilibrium Model.” Int. J. Chem. Reac. Eng. 1: 15.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joachim Richter
  • Andrzej Górak
    • 1
  • Eugeny Y Kenig
  1. 1.Department of Biochemical and Chemical EngineeringUniversity of DortmundDortmundGermany

Personalised recommendations