Plant Metabolomics pp 185-198

Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 57)

Systems Biology: A Renaissance of the Top-down Approach for Plant Analysis

  • F. Carrari
  • N. Schauer
  • L. Willmitzer
  • A. R. Fernie

6 Conclusions and Future Perspectives

The past years have revealed a great application for metabolite profiling as a diagnostic tool, and its growing importance in gene functional analysis is currently apparent. In contrast, attempts to use metabolite profiling as a tool in systems biology are in their infancy. It is likely that the development of systems biology depends to a large extent on technological improvements to improve our coverage of the metabolome. The integrative genomics approaches taken to date have given rich descriptive data networks. Whilst the challenge remains to elucidate themechanisms underlying behaviour in these networks, the fact that the phenotype of any biological system is largely determined by its metabolite composition provides ample reason to develop further on the foundation studies described in this chapter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, Boers ME, Blomquist PR, Martinez EJ, Monreal AW, Feibelman TP, Mayorga ME, Maxon ME, Sykes K, Tobin JV, Cordero E, Salama SR, Trueheart J, Royer JC, Madden KT (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21:150–156PubMedCrossRefGoogle Scholar
  2. Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, Clarke S, Schofield PM, McKilligin E, Mosedale DE, Grainger DJ (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 8:1439–1444PubMedCrossRefGoogle Scholar
  3. Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248PubMedCrossRefGoogle Scholar
  4. De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173PubMedCrossRefGoogle Scholar
  5. Edwards EJ, Cobb AH (1999) The effect of prior storage on the potential of potato tubers (Solanum tuberosumL) to accumulate glycoalkaloids and chlorophylls during light exposure, including artificial neural network modelling. J Sci Food Agr 79:1289–1297CrossRefGoogle Scholar
  6. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thalianal flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16:2923–2939PubMedCrossRefGoogle Scholar
  7. Even S, Lindley ND, Cocaign-Bousquet M (2003) Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures. Microbiology 149:1935–1944PubMedCrossRefGoogle Scholar
  8. Fernie AR, Sweetlove LJ (2004) Broad range metabolite analysis: integration into genomics programs. In: Ketner C (ed) Experimental standardization of classification of enzyme characteristics. Logos Verlag, Berlin (Germany)Google Scholar
  9. Fernie AR, Trethewey RN, Krotzky A, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nature Rev Mol Cell Biol 5:763–769CrossRefGoogle Scholar
  10. Fernie AR, Geigenberger P, Stitt M (2005) Flux an important, but neglected, component of functional genomics. Curr Opin Plant Biol 8:174–182PubMedCrossRefGoogle Scholar
  11. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161PubMedCrossRefGoogle Scholar
  12. Fridman E, Wang J, Iijima Y, Froehlich JE, Gang DR, Ohlrogge J, Pichersky E (2005) Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell 17:1252–1267PubMedCrossRefGoogle Scholar
  13. Futcher B (2000) Microarrays and cell cycle transcription in yeast. Curr Opin Cell Biol 12:710–715PubMedCrossRefGoogle Scholar
  14. Geigenberger P, Stitt M, Fernie AR (2004) Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell Environ 27:655–673CrossRefGoogle Scholar
  15. Giege P, Heazlewood JL, Roessner-Tunali U, Millar AH, Fernie AR, Leaver CJ, Sweetlove LJ (2003) Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell 15:2140–2151PubMedCrossRefGoogle Scholar
  16. Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Soderlund H, Zabeau M, Inze D, Oksman-Caldentey KM (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600PubMedCrossRefGoogle Scholar
  17. Gygi SP, Rist B, Aebersold R (2000) Measuring gene expression by quantitative proteome analysis. Curr Opin Biotechnol 11:396–401PubMedCrossRefGoogle Scholar
  18. Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113PubMedCrossRefGoogle Scholar
  19. Heinrich R, Rapoport TA (1973) Linear theory of enzymatic chains; its application for the analysis of the crossover theorem and of the glycolysis of human erythrocytes. Acta Biol Med Ger 31:479–494PubMedGoogle Scholar
  20. Hellerstein MK, Neese RA (1999) Mass isotopomer distribution analysis at eight years: theoretical, analytic, and experimental considerations. Am J Physiol 276:E1146–E1170PubMedGoogle Scholar
  21. Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. PNAS 101(27):10205–10210PubMedCrossRefGoogle Scholar
  22. Ideker T, Galitski T, Hood L (2001a) A new approach to decoding life: systems biology. Annu Rev Genom Hum Genet 2:343–372CrossRefGoogle Scholar
  23. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001b) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934PubMedCrossRefGoogle Scholar
  24. Jorgensen K, Rasmussen AV, Morant M, Nielsen AH, Biarnholt N, Zagrobelny M, Bak S, Moller BL (2005) Metabolon formation and metabolic chanelling in the biosynthesis of plant natural products. Curr Opin Plant Biol (in press)Google Scholar
  25. Kacser H, Burns JA (1974) The control of flux. Symp Soc Exp Biol 28:65–104Google Scholar
  26. Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168PubMedCrossRefGoogle Scholar
  27. Kitano H (2004) Biological Robustness. Nature Rev Gen 5:826–837CrossRefGoogle Scholar
  28. Mack GS (2004) Can complexity be commercialised? Nature Biotech 22:1223–1229CrossRefGoogle Scholar
  29. Nikiforova VJ, Gakiere B, Kempa S, Adamik M, Willmitzer L, Hesse H, Hoefgen R (2004) Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. J Exp Bot 55:1861–1870PubMedCrossRefGoogle Scholar
  30. Oksman-Caldentey KM, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotech 8 (in press)Google Scholar
  31. Oltvai ZN, Barabasi AL (2002) Systems biology. Life’s complexity pyramid. Science 298:763–764PubMedCrossRefGoogle Scholar
  32. Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50PubMedCrossRefGoogle Scholar
  33. Ratcliffe RG, Shachar-Hill Y (2005) Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol Rev Camb Philos Soc 80:27–43PubMedCrossRefGoogle Scholar
  34. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A (2001) Metabolite profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29PubMedCrossRefGoogle Scholar
  35. Roessner-Tunalli U, Willmitzer L, Fernie AR (2002) Metabolic profiling and biochemical phenotyping of plant systems. Plant Cell Rep 21:189–196CrossRefGoogle Scholar
  36. Roessner-Tunalli U, Liu JL, Leisse A, Balbo I, Melis-Perez A, Willmitzer L, Fernie AR (2004) Kinetic analysis of organic and amino acid metabolismin potato tubers by gas chromatography-mass spectrometry following incubation in 13C labelled isotopes. Plant J 39:668–679CrossRefGoogle Scholar
  37. Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, de Rycke R, Kushnir S, van Doorsselaere J, Joseleau JP, Vuylsteke M, van Driessche G, van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771PubMedCrossRefGoogle Scholar
  38. Rontein D, Dieuaide-Noubhani M, Dufourc EJ, Raymond P, Rolin D (2002) The metabolic architecture of plant cells. Stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J Biol Chem 277:43948–43960PubMedCrossRefGoogle Scholar
  39. Sauer U (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotech 15:58–63PubMedCrossRefGoogle Scholar
  40. Schauer N, Zamir D, Fernie AR (2005) Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J Exp Bot 56:297–307PubMedCrossRefGoogle Scholar
  41. Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499PubMedCrossRefGoogle Scholar
  42. Schwender J, Ohlrogge JB, Shachar-Hill Y (2003) A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem 278:29442–2953PubMedCrossRefGoogle Scholar
  43. Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782PubMedCrossRefGoogle Scholar
  44. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedCrossRefGoogle Scholar
  45. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211PubMedCrossRefGoogle Scholar
  46. Sonnewald U, Hajirezaei MR, Kossmann J, Heyer A, Trethewey RN, Willmitzer L (1997) Increased potato tuber size resulting from apoplastic expression of a yeast invertase. Nat Biotechnol 15:794–797PubMedCrossRefGoogle Scholar
  47. Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME, Spalding MH, Shanks JV (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional (13)C labeling, two-dimensional [(13)C, (1)H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol 136:3043–3057PubMedCrossRefGoogle Scholar
  48. Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotech 22:1261–1267CrossRefGoogle Scholar
  49. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836PubMedCrossRefGoogle Scholar
  50. Sweetlove LJ, Last RL, Fernie AR (2003) Predictive metabolic engineering: a goal for systems biology. Plant Physiol 132:420–425PubMedCrossRefGoogle Scholar
  51. Ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500:169–171PubMedCrossRefGoogle Scholar
  52. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN:a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939PubMedCrossRefGoogle Scholar
  53. Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inou E, Takahishi H, Goodenowe DB, Kitayama M et al (2005) Functional genomics by integrated anaylsis of the metabolome and transcriptome of Arabidopsis thaliana plants overexpressing a MYB transcription factor. Plant J (in press)Google Scholar
  54. Trethewey RN, Riesmeier JW, Willmitzer L, Stitt M, Geigenberger P (1999) Tuber-specific expression of a yeast invertase and a bacterial glucokinase in potato leads to an activation of sucrose phosphate synthase and the creation of a sucrose futile cycle. Planta 208:227–238CrossRefGoogle Scholar
  55. Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4:989–993PubMedCrossRefGoogle Scholar
  56. Weckwerth W, Loureiro ME, Wenzel K, Fiehn O (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc Natl Acad Sci USA 101:7809–7814PubMedCrossRefGoogle Scholar
  57. Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22:1249–1252PubMedCrossRefGoogle Scholar
  58. Yang C, Hua Q, Shimuzu K (2002) Integration of information from gene expression and metabolic fluxes for the analysis of regulatory mechanisms in Synechocystis. Appl Microbiol Biotechnol 58:813–822PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • F. Carrari
    • 1
    • 2
  • N. Schauer
    • 1
  • L. Willmitzer
    • 1
  • A. R. Fernie
    • 1
  1. 1.Max Planck Institute of Molecular Plant PhysiologyGolmGermany
  2. 2.CICV-INTA, Las Cabañas y Los ReserosIstituto de BiotecnologíaBuenos AiresArgentina

Personalised recommendations