AraCyc: Overview of an Arabidopsis Metabolism Database and its Applications for Plant Research

  • S. Y. Rhee
  • P. Zhang
  • H. Foerster
  • C. Tissier
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 57)

6 Conclusions

Currently we are experiencing a rapidly increasing rate of production of large-scale data such as genome sequences, genome-wide gene expression profiles, proteomics and metabolomics data. The necessity to organize all of these data into a biological framework has been, in part, the motivation for the work described in this review. While we have created a comprehensive database that describes the metabolic network of a model plant species, Arabidopsis thaliana, the database is far from being either complete or error-free. Many of the pathways are in need of manual curation using the current literature and many more pathways, particularly those for secondary metabolism and those that include transport reactions, need to be brought into the database. As with any other database project, the content of the AraCyc database is dynamic and will continue to undergo enhancement, additions, and modifications to make it more useful.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  2. Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang P, Mueller LA, Yoon J, Doyle A, Lander G, Moseyko N, Yoo D, Xu I, Zoeckler B, Montoya M, Miller N, Weems D, Rhee SY (2004) Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol 135:745–755PubMedCrossRefGoogle Scholar
  3. Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248PubMedCrossRefGoogle Scholar
  4. Dickerson JA, Yang Y, Blom K, Reinot A, Lie J, Cruz-Neira C, Wurtele ES (2003) Using virtual reality to understand complex metabolic networks. Atlantic symposium on computational biology and genomic information systems and technology, september, pp 950–953Google Scholar
  5. Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781PubMedCrossRefGoogle Scholar
  6. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) Adraft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  7. Gruber TR (1993) A translation approach to portable ontology specifications. Knowledge Acquisition 5:199–220CrossRefGoogle Scholar
  8. Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–101; discussion 101–103, 119–128, 244–152PubMedCrossRefGoogle Scholar
  9. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEG Gresource for deciphering the genome. Nucleic Acids Res 32:D277–D280PubMedCrossRefGoogle Scholar
  10. Karp PD (2000) An ontology for biological function based on molecular interactions. Bioinformatics 16:269–285PubMedCrossRefGoogle Scholar
  11. Karp PD, Paley S, Romero P (2002) The pathway tools software. Bioinformatics 18[Suppl 1]:S225–S232PubMedGoogle Scholar
  12. Karp PD, Paley S, Krieger CJ, Zhang P (2004) An evidence ontology for use in pathway/genome databases. Pacific Symp Biocomput 9:190–201Google Scholar
  13. Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M, Pick J, Rhee SY, Karp PD (2004) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 32:D438–D442PubMedCrossRefGoogle Scholar
  14. Maranas CD, Burgard AP (2001) Review of EcoCyc and MetaCyc databases. Metab Eng 3:98–99CrossRefGoogle Scholar
  15. Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460PubMedCrossRefGoogle Scholar
  16. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34PubMedCrossRefGoogle Scholar
  17. Paley SM, Karp PD (2002) Evaluation of computational metabolic-pathway predictions for Helicobacter pylori. Bioinformatics 18:715–724PubMedCrossRefGoogle Scholar
  18. Rohde P, Hincha DK, Heyer AG (2004) Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. Plant J 38:790–799PubMedCrossRefGoogle Scholar
  19. Selkov E, Basmanova S, Gaasterland T, Goryanin I, Gretchkin Y, Maltsev N, Nenashev V, Overbeek R, Panyushkina E, Pronevitch L, Selkov E Jr, Yunus I (1996) The metabolic pathway collection from EMP: the enzymes and metabolic pathways database. Nucleic Acids Res 24:26–28PubMedCrossRefGoogle Scholar
  20. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417PubMedCrossRefGoogle Scholar
  21. Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206PubMedCrossRefGoogle Scholar
  22. Strand A, Hurry V, Henkes S, Huner N, Gustafsson P, Gardestrom P, Stitt M (1999) Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiol 119:1387–1398PubMedCrossRefGoogle Scholar
  23. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426PubMedCrossRefGoogle Scholar
  24. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939PubMedCrossRefGoogle Scholar
  25. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599PubMedCrossRefGoogle Scholar
  26. Uemura M, Warren G, Steponkus PL (2003) Freezing sensitivity in the sfr4mutant of Arabidopsis is due to low sugar content and is manifested by loss of osmotic responsiveness. Plant Physiol 131:1800–1807PubMedCrossRefGoogle Scholar
  27. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211PubMedCrossRefGoogle Scholar
  28. Weckwerth W, Wenzel K, Fiehn O (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4:78–83PubMedCrossRefGoogle Scholar
  29. Wurtele ES, Li J, Diao L, Zhang H, Foster CM, Fatland B, Dickerson JA, Brown A, Cox Z, Cook D, Lee E-K, Hofmann H (2003) MetNet: Software to build and model the biogenetic lattice of Arabidopsis. Comp Funct Genom 4:239–245CrossRefGoogle Scholar
  30. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar
  31. Zhang P, Foerster H, Tissier CP, Mueller LA, Paley S, Karp PD, Rhee SY (2005) MetaCyc and AraCyc: metabolic pathway databases for plant research. Plant Physiol 138:27–37PubMedCrossRefGoogle Scholar
  32. Zuther E, Buchel K, Hundertmark M, Stitt M, Hincha DK, Heyer AG (2004) The role of raffinose in the cold acclimation response of Arabidopsis thaliana. FEBS Lett 576:169–173PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • S. Y. Rhee
  • P. Zhang
  • H. Foerster
    • 1
  • C. Tissier
  1. 1.Department of Plant BiologyCarnegie InstitutionStanfordUSA

Personalised recommendations