Advertisement

Hsp90 Inhibitors in the Clinic

  • S. Pacey
  • U. Banerj
  • I. Judson
  • P. WorkmanEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 172)

Abstract

Specific inhibitors of Hsp90 have recently entered human clinical trials. At the time of writing, trials have been initiated only in metastatic cancer, although a rationale exists for using these agents in a variety of human diseases where protein (mis)folding is involved in the disease pathophysiology. Hsp90 inhibitors offer a unique anti-cancer opportunity because they provide simultaneous combinatorial blockade ofmultiple oncogenic pathways. The first compound in this class, 17-AAG, has completed phase I trials and phase II trials are in progress. The toxicity has been manageable and evidence of possible clinical activity has been seen in metastatic melanoma, prostate cancer andmultiplemyeloma. Other inhibitors with improved properties are approaching clinical trials. This chapter presents an update of the current clinical trials using Hsp90 inhibitors, focussing on the areas that will be increasingly relevant in the next 5 years.

Keywords

Hsp90 Inhibitor Disease Clinical Trial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An WG, Schulte TW, Neckers LM (2000) The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ. 11: 355–360PubMedGoogle Scholar
  2. Armstrong BK, Kricker A (1994) Cutaneous melanoma. Cancer Surv. 19-20:219–240PubMedGoogle Scholar
  3. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868PubMedCrossRefGoogle Scholar
  4. Bagatell R, Whitesell L (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3:1021–1030PubMedGoogle Scholar
  5. Balmain A, Gray J, Ponder B (2003) The genetics and genomics of cancer. Nat Genet 33Suppl:238–244PubMedGoogle Scholar
  6. Banerji U, Walton M, Raynaud F, Kelland LR, Judson I, Workman P (2001) Validation of pharmacodynamic endpoints for the Hsp90 molecular chaperone inhibitor 17-allylamino 17-demethoxygeldanamycin (17-AAG) in a human tumour xenograft model. Proc Am Asso Cancer Res 42:833Google Scholar
  7. Banerji U, O’Donnell A, Scurr M, Benson C, Stapleton S, Raynaud F, Clarke PA, Turner A, Workman P, Judson I (2003) A pharmacokinetically (PK) — pharmacodynamically (PD) guided phase I trial of the heat shock protein (Hsp90) inhibitor 17-Allylamino, 17-demethoxygeldanamycin (17AAG). Proc Am Soc Clin Oncol 22:199Google Scholar
  8. Banerji U, O’Donnell A, Scurr M, Pacey S, Stapleton S, Asad Y, Simmons L, Maloney A, Raynaud F, Campbell M, Walton M, Lakhani S, Kaye S, Workman P, Judson I (2005) A Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of 17-allylamino, 17-demethoxygeldanamycin (17-AAG) in patients with advanced malignancies. J Clin Oncol 23:4152–4161)PubMedCrossRefGoogle Scholar
  9. Banerji U, Walton M, Raynaud F, Grimshaw R, Kelland LR, Valentini M, Judson I, Workman P (2005b) Pharmacokinetic-Pharmacodynamic relationships for the HSP90 molecular chaperone inhbitors 17-Allylamino, 17-demethoxygeldanamycin (17-AAG) in human ovarian cancer models. Clin Cancer Res (in press)Google Scholar
  10. Barral JM, Broadley SA, Schaffar G, Hartl FU (2004) Roles of molecular chaperones in protein misfolding diseases. Semin Cell Dev Biol 15:17–29PubMedCrossRefGoogle Scholar
  11. Baselga J, Albanell J, Molina MA, Arribas J (2001) Mechanism of action of trastuzumab and scientific update. Semin Oncol 28:4–11PubMedCrossRefGoogle Scholar
  12. Bearss DJ, Hurley LH, Von Hoff DD (2000) Telomere maintenance mechanisms as a target for drug development. Oncogene 19:6632–6641PubMedGoogle Scholar
  13. Beliakoff J, Bagatell R, Paine-Murrieta G, Taylor CW, Lykkesfeldt AE, Whitesell L (2003) Hormone-refractory breast cancer remains sensitive to the antitumor activity of heat shock protein 90 inhibitors. Clin Cancer Res 9: 4961–4971PubMedGoogle Scholar
  14. Braga-Basaria M, Hardy E, Gottfried R, Burman KD, Saji M, Ringel MD (2004) 17-Allylamino-17-demethoxygeldanamycin activity against thyroid cancer cell lines correlateswith heat shock protein 90 levels. J Clin Endocrinol Metab 89:2982–2988PubMedCrossRefGoogle Scholar
  15. Burger AM, Fiebig HH, Stinson SF, Sausville EA (2004) 17-(Allylamino)-17-demethoxygeldanamycin activity in human melanoma models. Anticancer Drugs 15:377–387PubMedGoogle Scholar
  16. Chabner BA, Roberts TG (2005) Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72PubMedCrossRefGoogle Scholar
  17. Chen LL, Trent JC, Wu EF, Fuller GN, Ramdas L, Zhang W, Raymond AK, Prieto VG, Oyedeji CO, Hunt KK, Pollock RE, Feig BW, Hayes KJ, Choi H, Macapinlac HA, Hittelman W, Velasco MA, Patel S, Burgess MA, Benjamin RS, Frazier ML (2004) A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res 64:5913–5919PubMedGoogle Scholar
  18. Cheung KM, Matthews T, James K, Aherne W, Rowlands M, Boxall K, Sharp S, Prodromou C, Pearl L, McDonald E, Workman P (2005) The identification, synthesis and in vitro biochemical evaluation of a new class of Hsp90 inhibitors. J Med Chem Bioorg Med Chem Lett 15:3338–3343Google Scholar
  19. Child JA, Morgan GJ, Davies FE, Owen RG, Bell SE, Hawkins K, Brown J, Drayson MT, Selby PJ (2003) High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 348:1875–1883PubMedCrossRefGoogle Scholar
  20. Chiosis G, Lucas B, Shtil A, Huezo H, Rosen N (2002) Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg Med Chem 10:3555–3564PubMedGoogle Scholar
  21. Chiosis G, Huezo H, Rosen N, Mimnaugh E, Whitesell L, Neckers L (2003) 1AAG: low target binding affinity and potent cell activity—finding an explanation. Mol Cancer Ther 2:123–129PubMedGoogle Scholar
  22. Chiosis G, Vilenchik M, Kim J, Solit D (2004) Hsp90: the vulnerable chaperone. Drug Discov Today 9: 881–888PubMedCrossRefGoogle Scholar
  23. Choo-Kang LR, Zeitlin PL (2001) Induction of Hsp70 promotes Delta F508 CFTR trafficking. Am J Physiol Lung Cell Mol Physiol 281:L58–L68PubMedGoogle Scholar
  24. Chung J, Yoon S, Datta K, Bachelder RE, Mercurio AM (2004) Hypoxia-induced vascular endothelial growth factor transcription and protection from apoptosis are dependent on alpha6beta1 integrin in breast carcinoma cells. Cancer Res 64:4711–4716PubMedCrossRefGoogle Scholar
  25. Chung YL, Troy H, Banerji U, Jackson LE, Walton M, Stubbs M, Griffiths JR, Judson I, Leach MO, Workman P, Ronen SM (2003) Magnetic resonance spectroscopic pharmacodynamic markers of the heat shock protien inhibitor 17-allyamino, 17-demethoxy-geldanamycin (17-AAG) in human colon cancer models. J Natl Cancer Inst 95: 1624–1633PubMedGoogle Scholar
  26. Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M, Judson I, Workman P (2000) Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene 19: 4125–4133PubMedGoogle Scholar
  27. Cohen FE, Kelly JW (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426:905–909PubMedGoogle Scholar
  28. Daude N, Marella M, Chabry J (2003) Specific inhibition of pathological prion protein accumulation by small interfering RNAs. J Cell Sci 116:2775–2779PubMedCrossRefGoogle Scholar
  29. daRocha Dias S, Light Y, Friedlos F, Springer C, Workman P, Marais R (2005) Oncogenic BRAF is an Hsp90 client protein that is targetted by the anti-cancer drug 17-AAG. Cancer Res (in press)Google Scholar
  30. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417: 949–954PubMedCrossRefGoogle Scholar
  31. De Carcer G, do Carmo Avides M, Lallena MJ, Glover DM, Gonzalez C (2001) Requirement of Hsp90 for centrosomal function reflects its regulation of Polo kinase stability. EMBO J 20:2878–2884PubMedGoogle Scholar
  32. DeVita VT Jr, Hellman S, Rosenberg SA (2001) Cancer: principles and practise of oncology, 6 edn. Lippincott, Williams and Wilkins, PhiladelphiaGoogle Scholar
  33. Druker BJ (2003) David A. Karnofsky Award lecture. Imatinib as a paradigm of targeted therapies. J Clin Oncol 21:239S–245SPubMedCrossRefGoogle Scholar
  34. Dymock B, Drysdale M, McDonald E, Workman P (2004) Inhibitors of Hsp90 and other chaperones for the treatment of cancer. Expert Opin Ther Patents 14:837–847CrossRefGoogle Scholar
  35. Dymock BW, Barril X, Brough PA, Cansfield JE, Massey A, McDonald E, Hubbard RE, Surgenor A, Roughley SD, Webb P, Workman P, Wright L, Drysdale MJ (2005) Novel, potent small-molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design. J Med Chem 48:4212–4215PubMedCrossRefGoogle Scholar
  36. Eder JP, Wheeler CA, Teicher BA, Schnipper LE (1991) A phase I clinical trial of novobiocin, a modulator of alkylating agent cytotoxicity. Cancer Res 51:510–513PubMedGoogle Scholar
  37. Egorin MJ, Zuhowski EG, Rosen DM, Sentz DL, Covey JM, Eiseman JL (2001) Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CDF1 mice. Cancer Chemother Pharmacol 47: 291–302PubMedCrossRefGoogle Scholar
  38. Eigentler TK, Caroli UM, Radny P, Garbe C (2003) Palliative therapy of disseminated malignant melanoma: a systematic review of 41 randomised clinical trials. Lancet Oncol 4:748–759PubMedCrossRefGoogle Scholar
  39. Eiseman JL, Lan J, Lagattuta TF, Hamburger DR, Joseph E, Covey JM, Egorin MJ (2005) Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl] amino]geldanamycin(1DMAG,NSC707545) in C.B-17 SCID mice bearingMDA-MB-231 human breast cancer xenografts. Cancer Chemother Pharmacol 55:21–32PubMedCrossRefGoogle Scholar
  40. Ellis GK, Crowley J, Livingston RB, Goodwin JW, Hutchins L, Allen A (1991) Cisplatin and novobiocin in the treatment of non-small cell lung cancer. A Southwest Oncology Group study. Cancer 67:2969–2973Google Scholar
  41. Erlichman C, Toft D, Reid J, Sloan J, Atherton P, Adjei A, Ames M, Croghan G (2001) A phase I trial of 17 allylamino geldanamycin in patients with advanced cancer. Proc Am Asso Cancer Res 42:833Google Scholar
  42. Erlichman C, Toft D, Reid J, Goetz M, Ames M, Mandrekar A, Ajei A, McCollum A, Ivy P (2004) A Phase I trial of 17-allylamino-geldanamycin) (1AAG) in patients with advanced cancer (abstract). Proc Am Assoc Clin Oncol 23: 3030Google Scholar
  43. Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE (2001) Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem 276:15571–15574PubMedCrossRefGoogle Scholar
  44. Fuller W, Cuthbert AW (2000) Post-translational disruption of the delta F508 cystic fibrosis transmembrane conductance regulator (CFTR)-molecular chaperone complex with geldanamycin stabilizes delta F508 CFTR in the rabbit reticulocyte lysate. J Biol Chem 275:37462–37468PubMedCrossRefGoogle Scholar
  45. Gelmon KA, Eisenhauer EA, Harris AL, Ratain MJ, Workman P (1999) Anticancer agents targeting signaling molecules and cancer cell environment: challenges for drug development? J Natl Cancer Inst 91:1281–1287PubMedCrossRefGoogle Scholar
  46. George P, Bali P, Annavarapu S, Scuto A, Fiskus W, Guo F, Sigua C, Sondarva G, Moscinski L, Atadja P, Bhalla K (2005) Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT. Blood 105:1768–1776PubMedGoogle Scholar
  47. Goetz M, Toft D, Reid J, Sloan J, Atherton P, Adjei A, Croghan G, Weinshilboum R, Erlichman C, Ames M (2002) A phase I trial of 17-allyaminodemethoxygeldanamycin (17-AAG) in patients with advanced cancer. Proceedings EORTC-NCI-AACR Symposium of Molecular Cancer Therapeutics. Eur J Cancer 38[Suppl]:S54Google Scholar
  48. Goetz MP, Toft D, Reid J, Ames M, Stensgard B, Safgren S, Adjei AA, Sloan J, Atherton P, Vasile V, Salazaar S, Adjei A, Croghan G, Erlichman C (2005) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 23:1078–1087PubMedGoogle Scholar
  49. Gore L, Holden SN, Basche M, Raj SKS, Arnold I, O’Bryant C, Witta S, Rohde B, McCoy C, Eckhardt SG (2004) Updated results from a phase I trial of the histone deacetylase (HDAC) inhibitor MS-275 in patients with refractory solid tumours. Proc Am Soc Clin Oncol 22:3026Google Scholar
  50. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880PubMedCrossRefGoogle Scholar
  51. Gossett DR, Bradley MS, Jin X, Lin J (2005) 17-Allyamino-17-demethoxygeldanamycin and 17-NN-dimethyl ethylene diamine-geldanamycin have cytotoxic activity against multiple gynecologic cancer cell types. Gynecol Oncol 96: 381–388PubMedCrossRefGoogle Scholar
  52. Grem JL, Morrison G, Guo XD, Agnew E, Takimoto CH, Thomas R, Szabo E, Grochow L, Grollman F, Hamilton JM, Neckers L, Wilson RH (2005) Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol 23:1885–1893PubMedCrossRefGoogle Scholar
  53. Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843–23850PubMedCrossRefGoogle Scholar
  54. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  55. Hollingshead M, Alley M, Burger AM, Borgel S, Pacula-Cox C, Fiebig HH, Sausville EA (2005) In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother Pharmacol. Cancer Chemother Pharmacol 56:115–125Google Scholar
  56. Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA (2001) Inhibtion of signal transduction by Hsp90 inhibitor 17-allylamino, 17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61: 4003–4009PubMedGoogle Scholar
  57. Itoh H, Ogura M, Komatsuda A, Wakui H, Miura AB, Tashima Y (1999) A novel chaperoneactivity-reducing mechanism of the 90-kDa molecular chaperone Hsp90. Biochem J 343:697–703PubMedCrossRefGoogle Scholar
  58. Jaattela M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248:30–43PubMedCrossRefGoogle Scholar
  59. Jemal A, Thomas A, Murray T, Thun M (2002) Cancer statistics, 20CA. Cancer J Clin 52:23–47CrossRefGoogle Scholar
  60. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410PubMedCrossRefGoogle Scholar
  61. Kawano R, Ohshima K, Karube K, Yamaguchi T, Kohno S, Suzumiya J, Kikuchi M, Tamura K (2004) Prognostic significance of hepatocyte growth factor and c-MET expression in patients with diffuse large B-cell lymphoma. Br J Haematol 127:305–307PubMedCrossRefGoogle Scholar
  62. Kelland LR, Sharp SY, Rogers PM, Myers TG, Workman P (1999) DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J Natl Cancer Inst 91: 1940–1949PubMedCrossRefGoogle Scholar
  63. Kiang JG, Bowman PD, Wu BW, Hampton N, Kiang AG, Zhao B, Juang YT, Atkins JL, Tsokos GC (2004) Geldanamycin treatment inhibits hemorrhage-induced increases in KLF6 and iNOS expression in unresuscitated mouse organs: role of inducible Hsp70. J Appl Physiol 97:564–569PubMedCrossRefGoogle Scholar
  64. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3: 711–715PubMedCrossRefGoogle Scholar
  65. Kristeleit RS, Tandy D, Atadja P, Patnaik A, Scott J, De Bono JS, Judson I, Kaye SB, Workman P, Aherne W (2004) Effects of the histone deacetylase inhibitor (HDACi) LAQ824 on histone acetylation, Hsp70 and c-Raf in peripheral blood lymphocytes from patients with advanced solid tumours enrolled in a phase I clinical trial. Proc Am Soc Clin Oncol 22:3032Google Scholar
  66. Kumar R, Musiyenko A, Barik S (2003) The heat shock protein 90 of Plasmodiumfalciparum and antimalarial activity of its inhibitor, geldanamycin. Malar J 2:30PubMedCrossRefGoogle Scholar
  67. Latchman DS (2001) Heat shock proteins and cardiac protection. Cardiovasc Res 51:637–646PubMedCrossRefGoogle Scholar
  68. Llauger L, He H, Kim J, Aguirre J, Rosen N, Peters U, Davies P, Chiosis G (2005) Evaluation of 8-arylsulfanyl, 8-arylsulfoxyl, and 8-arylsulfonyl adenine derivatives as inhibitors of the heat shock protein 90. J Med Chem 48: 2892–2905PubMedCrossRefGoogle Scholar
  69. Longley BJ Jr, Metcalfe DD, Tharp M, Wang X, Tyrrell L, Lu SZ, Heitjan D, Ma Y (1999) Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc Natl Acad Sci U S A 96:1609–1614PubMedCrossRefGoogle Scholar
  70. Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874PubMedCrossRefGoogle Scholar
  71. Maloney A, Workman P (2002) Hsp90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2:3–24PubMedCrossRefGoogle Scholar
  72. Manola J, Atkins M, Ibrahim J, Kirkwood J (2000) Prognostic factors in metastaticmelanoma: a pooled analysis of Eastern Cooperative Oncology Group trials. J Clin Oncol 18:3782–3793PubMedGoogle Scholar
  73. Marcu M, Neckers L (2003) The C-Terminal half of heat shock protein 90 represents a second site for pharmacologic intervention in chaperone function. Curr Cancer Drug Targets 3:343–347PubMedCrossRefGoogle Scholar
  74. Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181–37186PubMedCrossRefGoogle Scholar
  75. Matthews RC, Burnie JP (2004) Recombinant antibodies: a natural partner in combinatorial antifungal therapy. Vaccine 22:865–871PubMedCrossRefGoogle Scholar
  76. Matthews RC, Rigg G, Hodgetts S, Carter T, Chapman C, Gregory C, Illidge C, Burnie J (2003) Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HspAntimicrob Agents Chemother 47: 2208–2216Google Scholar
  77. Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C (1999) Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 460:251–256PubMedCrossRefGoogle Scholar
  78. Mitsiades C, Chanan-Khan A, Alsina M, Dass D, Landrigan D, Keitner M, Albitar GF, Hannah AL, Richardson P (2005) Phase I trial of 17-AAG in patients with relapsed and refractory multiple myeloma (MM). Proc American Assoc Clin Onc 23:3056Google Scholar
  79. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Treon SP, Munshi NC, Richardson PG, Hideshima T, Anderson KC (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A 99:14374–14379PubMedCrossRefGoogle Scholar
  80. Nardai G, Sass B, Eber J, Orosz G, Csermely P (2000) Reactive cysteines of the 90-kDa heat shock protein, Hsp90. Arch Biochem Biophys 384:59–67PubMedCrossRefGoogle Scholar
  81. Neckers L, Ivy P (2003). Heat Shock Protein 90. Curr Opin Oncol 15:419–24PubMedGoogle Scholar
  82. Nooney L, Matthews RC, Burnie JP (2005) Evaluation of mycograb, amphotericin B, caspofungin, and fluconazole in combination against Cryptococcus neoformans by checkerboard and time-kill methodologies. Diagn Microbiol Infect Dis. 51:19–29PubMedCrossRefGoogle Scholar
  83. Nottage M, Siu LL (2002) Principles of clinical trial design. J Clin Oncol 20:42S–46SPubMedGoogle Scholar
  84. Ochel HJ, Gademann G (2004) Destabilization of the non-pathogenic, cellular prion-protein by a small molecular drug. Antivir Ther 9:441–445PubMedGoogle Scholar
  85. Okabe M, Uehara Y, Miyagishima T, Itaya T, Tanaka M, Kuni-Eda Y, Kurosawa M, Miyazaki T (1992) Effect of herbimycin A, an antagonist of tyrosine kinase, on bcr/abl oncoprotein-associated cell proliferations: abrogative effect on the transformation of murine hematopoietic cells by transfection of a retroviral vector expressing oncoprotein P210bcr/abl and preferential inhibition on Ph1-positive leukemia cell growth. Blood 80:1330–1338PubMedGoogle Scholar
  86. Okada M, Itoh H, Hatakeyama T, Tokumitsu H, Kobayashi R (2003) Hsp90 is a direct target of the anti-allergic drugs disodium cromoglycate and amlexanox. Biochem J 374:433–441PubMedCrossRefGoogle Scholar
  87. Orr HT (2004) Neurodegenerative disease: neuron protection agency. Nature 431:747–748PubMedCrossRefGoogle Scholar
  88. Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME, Burch PA, Berry D, Moinpour C, Kohli M, Benson MC, Small EJ, Raghavan D, Crawford ED (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520PubMedCrossRefGoogle Scholar
  89. Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75PubMedCrossRefGoogle Scholar
  90. Ramanathan RK, Trump DL, Eiseman JL, Belani P, Agarwala S, Zuhowski EG, Lan J, Ivy P (2004) A phase I pharmacokinetic (PK) and pharmacodynamic (PD) trial of weekly 17-allylamino-17 demethoxygeldanamcyin (17-AAG, NSC-704057) in patients with advanced tumors (abstract). Proc Am Assoc Clin Oncol 23:3031Google Scholar
  91. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson KC (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617PubMedCrossRefGoogle Scholar
  92. Rosenhagen MC, Soti C, Schmidt U, Wochnik GM, Hartl FU, Holsboer F, Young JC, Rein T (2003) The heat shock protein 90-targeting drug cisplatin selectively inhibits steroid receptor activation. Mol Endocrinol 17: 1991–2001PubMedCrossRefGoogle Scholar
  93. Rowlands MG, Newbatt YM, Prodromou C, Pearl LH, Workman P, Aherne W (2004) High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal Biochem 327:176–183PubMedCrossRefGoogle Scholar
  94. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor formorphological evolution. Nature 396:336–342PubMedCrossRefGoogle Scholar
  95. Santos NC, Figueria-Coelho J, Martin-Silva J (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular and molecular aspects. Biochem Pharmacol 65:1035–1041PubMedCrossRefGoogle Scholar
  96. Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to HspProc Natl Acad Sci U S A 97:10832–10837Google Scholar
  97. Sausville EA, Tomaszewski JE, Ivy P (2003) Clinical development of 17-allylamino, 17-demethoxygeldanamycin. Curr Cancer Drug Targets 3:377–383PubMedCrossRefGoogle Scholar
  98. Scherer FM (2004) The pharmaceutical industry-prices and progress. N Engl J Med 351:927–932PubMedCrossRefGoogle Scholar
  99. Schnur RC, Corman ML, Gallaschun RJ, Cooper BA, Dee MF, Doty JL, Muzzi ML, DiOrio CI, Barbacci EG, Miller PE et al. (1995) erbB-2 oncogene inhibition by geldanamycin derivatives: synthesis, mechanism of action, and structure-activity relationships. J Med Chem 38:3813–3820PubMedGoogle Scholar
  100. Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM (1996) Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol Cell Biol 16:5839–5845PubMedGoogle Scholar
  101. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–125PubMedCrossRefGoogle Scholar
  102. Sheriff M, Clarke PA, Workman P (2004) Factors that govern the cell death response induced by inhibition of the molecular chaperone heat shock protein 90. Eur J Cancer 2:97Google Scholar
  103. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, Zeddis J, Barlogie B (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341:1565–1571PubMedCrossRefGoogle Scholar
  104. Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10:1307–1315PubMedCrossRefGoogle Scholar
  105. Slamon D, Pegram M (2001) Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol 28:13–19PubMedCrossRefGoogle Scholar
  106. Soga S, Shiotsu Y, Akinaga S, Sharma SV (2003) Development of radicicol analogues. Curr Cancer Drug Targets. 3:359–369PubMedCrossRefGoogle Scholar
  107. Soldano KL, Jivan A, Nicchitta CV, Gewirth DT (2003) Stucture of the N-terminal domain of GRP94: basis for ligand specificity and regulation. J Biol Chem 48:48330–48338Google Scholar
  108. Solit DB, Zheng FF, Drobnjak M, Munster PN, Higgins B, Verbel D, Heller G, Tong W, Cordon-Cardo C, Agus DB, Scher HI, Rosen N (2002) 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res 8:986–993PubMedGoogle Scholar
  109. Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N (2003a) Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 63:2139–2144PubMedGoogle Scholar
  110. Solit DB, Scher HI, Rosen N (2003b) Hsp90 as a therapeutic target in prostate cancer. Semin Oncol 30: 709–716PubMedCrossRefGoogle Scholar
  111. Solit DB, Egorin M, Valetin G, Delacruz QYe, Schwartz L, Larson N, Rosen N, Scher HI (2004) A Phase 1 pharmacokinetic and pharmacodynamic trial of decetaxol and 1AAG (17-allylamin-17-demethoxygeldanamycin). Proc Am Assoc Clin Oncol 22:3032Google Scholar
  112. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250PubMedCrossRefGoogle Scholar
  113. Sugita T, Tanaka S, Murakami T, Miyoshi H, Ohnuki T (1999) Immunosuppressive effects of the heat shock protein 90-binding antibiotic geldanamycin. Biochem Mol Biol Int 47:587–595PubMedGoogle Scholar
  114. Supko JG, Hickman RL, Grever MR, Malspeis L (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305–515PubMedGoogle Scholar
  115. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Theodore C, James ND, Turesson I, Rosenthal MA, Eisenberger MA (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512PubMedCrossRefGoogle Scholar
  116. Toms JR (2004) CancerStats Monograph. Cancer Research UK, LondonGoogle Scholar
  117. Tsan MF, Gao B (2004) Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 286:C739–C744PubMedCrossRefGoogle Scholar
  118. Van Oosterom AT, Judson IR, Verweij J, Stroobants S, Dumez H, Donato dP, Sciot R, van Glabbeke M, Dimitrijevic S, Nielsen OS (2002) Update of phase I study of imatinib (STI571) in advanced soft tissue sarcomas and gastrointestinal stromal tumors: a report of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 38[Suppl] 5:S83–S87PubMedGoogle Scholar
  119. Wax S, Piecyk M, Maritim B, Anderson P (2003) Geldanamycin inhibits the production of inflammatory cytokines in activated macrophages by reducing the stability and translation of cytokine transcripts. Arthritis Rheum 48: 541–550PubMedCrossRefGoogle Scholar
  120. Weber D (2003) Thalidomide and its derivatives: new promise for multiple myeloma. Cancer Control 10: 375–383PubMedGoogle Scholar
  121. Weissmann C (2004) The state of the prion. Nat Rev Microbiol. 2:861–871PubMedCrossRefGoogle Scholar
  122. Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH (1998) The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 18: 1517–1524PubMedGoogle Scholar
  123. Workman P (2005) Genomics and the second golden era of cancer drug development. Molecular BioSystems in pressGoogle Scholar
  124. Workman P (2004) Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 206:149–157PubMedCrossRefGoogle Scholar
  125. Wright L, Barril X, Dymock B, Sheridan L, Surgenor A, Beswick M, Drysdale M, Collier A, Massey A, Davies N, Fink A, Fromont C, Aherne W, Boxall K, Sharp S, Workman P, Hubbard RE (2004) Structure-activity relationships in purine-based inhibitor binding to Hsp90 isoforms. Chem Biol 11:775–785PubMedCrossRefGoogle Scholar
  126. Xu L, Eiseman JL, Egorin MJ, D’Argenio DZ (2003) Physiologically-based pharmacokinetics and molecular pharmacodynamics of 17-(allylamino)-17-demethoxygeldanamycin and its active metabolite in tumor-bearing mice. J Pharmacokinet Pharmacodyn 30:185–219PubMedCrossRefGoogle Scholar
  127. Xu W, Mimnaugh E, Rosser MF, Nicchitta C, Marcu M, Yarden Y, Neckers L (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 276: 3702–3708PubMedGoogle Scholar
  128. Yu X, Guo ZS, Marcu MG, Neckers L, Nguyen DM, Chen GA, Schrump DS (2002) Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 94:504–513PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.The Institute of Cancer Research, Haddow LaboratoriesCancer Research UK Centre for Cancer TherapeuticsSutton, SurreyUK
  2. 2.The Royal Marsden Foundation NHS TrustSutton, SurreyUK

Personalised recommendations