Molecular Chaperones and Cancer Immunotherapy

Part of the Handbook of Experimental Pharmacology book series (HEP, volume 172)


As one of the most abundant and evolutionally conserved intracellular proteins, heat shock proteins, also known as stress proteins or molecular chaperones, perform critical functions in maintaining cell homeostasis under physiological as well as stress conditions. Certain chaperones in extracellular milieu are also capable of modulating innate and adaptive immunity due to their ability to chaperone polypeptides and to interact with the host’s immune system, particularly professional antigen-presenting cells. The immunomodulating properties of chaperones have been exploited for cancer immunotherapy. Clinical trials using chaperone-based vaccines to treat various malignancies are ongoing.


Molecular chaperone Heat shock proteins Immunity Vaccine Cancer immunotherapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarraberes FA, Dice JF (2001) Amolecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114:2491–2499PubMedGoogle Scholar
  2. Agarraberes FA, Terlecky SR, Dice JF (1997) An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137:825–834PubMedCrossRefGoogle Scholar
  3. Arnold D, Faath S, Rammensee H, Schild H (1995) Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 182:885–889PubMedCrossRefGoogle Scholar
  4. Arnold D, Wahl C, Faath S, Rammensee HG, Schild H (1997) Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. J Exp Med 186:461–466PubMedCrossRefGoogle Scholar
  5. Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la Salle H, Schild H (1999) Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162: 3757–3760PubMedGoogle Scholar
  6. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442PubMedGoogle Scholar
  7. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034PubMedCrossRefGoogle Scholar
  8. Azuma K, Shichijo S, Takedatsu H, Komatsu N, Sawamizu H, Itoh K (2003) Heat shock cognate protein 70 encodes antigenic epitopes recognised by HLA-B4601-restricted cytotoxic T lymphocytes from cancer patients. Br J Cancer 89:1079–1085PubMedCrossRefGoogle Scholar
  9. Baker-LePain JC, Reed RC, Nicchitta CV (2003) ISO: a critical evaluation of the role of peptides in heat shock/chaperone protein-mediated tumor rejection. Curr Opin Immunol 15:89–94PubMedCrossRefGoogle Scholar
  10. Baker-LePain JC, Sarzotti M, Fields TA, Li CY, Nicchitta CV (2002) GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumor suppression. J Exp Med 196:1447–1459PubMedCrossRefGoogle Scholar
  11. Banchereau J, Fay J, Pascual V, Palucka AK (2003) Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Novartis Found Symp 252:226–235; discussion 235-238, 257-267PubMedGoogle Scholar
  12. Barrios C, Lussow AR, Van Embden J, Van der Zee R, Rappuoli R, Costantino P, Louis JA, Lambert PH, Del Giudice G (1992) Mycobacterial heat-shock proteins as carrier molecules. II: the use of the 70-kDamycobacterial heat-shock protein as carrier for conjugated vaccines can circumvent the need for adjuvants and Bacillus Calmette Guerin priming. Eur J Immunol 22:1365–1372PubMedGoogle Scholar
  13. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313PubMedCrossRefGoogle Scholar
  14. Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of hsp70-peptide complexes. J Cell Biol 158:1277–1285PubMedCrossRefGoogle Scholar
  15. Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR, Gallino G, Piris A, Cattelan A, Lazzari I, Carrabba M, Scita G, Santantonio C, Pilla L, Tragni G, Lombardo C, Arienti F, Marchiano A, Queirolo P, Bertolini F, Cova A, Lamaj E, Ascani L, Camerini R, Corsi M, Cascinelli N, Lewis JJ, Srivastava P, Parmiani G (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20:4169–4180PubMedCrossRefGoogle Scholar
  16. Berwin B, Delneste Y, Lovingood RV, Post SR, Pizzo SV (2004) SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin. J Biol Chem 279:51250–51257PubMedCrossRefGoogle Scholar
  17. Berwin B, Hart JP, Rice S, Gass C, Pizzo SV, Post SR, Nicchitta CV (2003) Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J 22:6127–6136PubMedCrossRefGoogle Scholar
  18. Binder RJ, Han DK, Srivastava PK (2000a) CD91: a receptor for heat shock protein gp96. Nat Immunol 1: 151–155PubMedCrossRefGoogle Scholar
  19. Binder RJ, Harris ML, Menoret A, Srivastava PK (2000b) Saturation, competition, and specificity in interaction of heat shock proteins (HSP) gp96, hsp90, and hsp70 with CD11b+ cells. J Immunol 165:2582–2587PubMedGoogle Scholar
  20. Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptidespecific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186:1315–1322PubMedCrossRefGoogle Scholar
  21. Blachere NE, Udono H, Janetzki S, Li Z, Heike M, Srivastava PK (1993) Heat shock protein vaccines against cancer. J Immunother 14:352–356PubMedGoogle Scholar
  22. Black AR, Subjeck JR (1991) The biology and physiology of the heat shock and glucose-regulated stress protein systems. Methods Achiev Exp Pathol 15:126–166PubMedGoogle Scholar
  23. Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething MJ (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75:717–728PubMedCrossRefGoogle Scholar
  24. Breloer M, Marti T, Fleischer B, von Bonin A (1998) Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur J Immunol 28:1016–1021PubMedCrossRefGoogle Scholar
  25. Casares S, Inaba K, Brumeanu TD, Steinman RM, Bona CA (1997) Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II-restricted viral epitope. J Exp Med 186:1481–1486PubMedCrossRefGoogle Scholar
  26. Castelli C, Ciupitu AM, Rini F, Rivoltini L, Mazzocchi A, Kiessling R, Parmiani G (2001) Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res 61:222–227PubMedGoogle Scholar
  27. Castelli C, Rivoltini L, Rini F, Belli F, Testori A, Maio M, Mazzaferro V, Coppa J, Srivastava PK, Parmiani G (2004) Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53:227–233PubMedCrossRefGoogle Scholar
  28. Castellino F, Boucher PE, Eichelberg K, Mayhew M, Rothman JE, Houghton AN, Germain RN (2000) Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentationvia two distinct processing pathways. J Exp Med 191:1957–1964PubMedGoogle Scholar
  29. Chen CH, Wang TL, Hung CF, Yang Y, Young RA, Pardoll DM, Wu TC (2000) Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res 60:1035–1042PubMedGoogle Scholar
  30. Chen X, Tao Q, Yu H, Zhang L, Cao X (2002) Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunol Lett 84:81–87PubMedGoogle Scholar
  31. Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC (2001) Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 108:669–678PubMedCrossRefGoogle Scholar
  32. Chirico WJ, Waters MG, Blobel G (1988) 70 K heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–810PubMedCrossRefGoogle Scholar
  33. Chu NR, Wu HB, Wu TC, Boux LJ, Mizzen LA, Siegel MI (2000) Immunotherapy of a human papillomavirus type 16 E7-expressing tumor by administration of fusion protein comprised of Mycobacterium bovis BCG hsp65 and HPV16 E7. Cell Stress Chaperones 5:401–405PubMedCrossRefGoogle Scholar
  34. Ciupitu AM, Petersson M, Kono K, Charo J, Kiessling R (2002) Immunization with heat shock protein 70 from methylcholanthrene-induced sarcomas induces tumor protection correlating with in vitro T cell responses. Cancer Immunol Immunother 51:163–170PubMedGoogle Scholar
  35. Cohen L, de Moor C, Parker PA, Amato RJ (2002) Quality of life in patients with metastatic renal cell carcinoma participating in a phase I trial of an autologous tumor-derived vaccine. Urol Oncol 7:119–124PubMedGoogle Scholar
  36. Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57:402–414PubMedGoogle Scholar
  37. Cranmer LD, Trevor KT, Hersh EM (2004) Clinical applications of dendritic cell vaccination in the treatment of cancer. Cancer Immunol Immunother 53:275–306PubMedCrossRefGoogle Scholar
  38. Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J, Jeannin P (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17:353–362PubMedCrossRefGoogle Scholar
  39. Demine R, Walden P (2005) Testing the role of gp96 as peptide chaperone in antigen processing. J Biol Chem 280:17573–17578PubMedGoogle Scholar
  40. Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800–805PubMedCrossRefGoogle Scholar
  41. Doody AD, Kovalchin JT, Mihalyo MA, Hagymasi AT, Drake CG, Adler AJ (2004) Glycoprotein 96 can chaperone both MHC class I-and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol 172:6087–6092PubMedGoogle Scholar
  42. Easton DP, Kaneko Y, Subjeck JR (2000) The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the hsp70s. Cell Stress Chaperones 5:276–2790PubMedCrossRefGoogle Scholar
  43. Feng H, Zeng Y, Graner MW, Katsanis E (2002) Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood 100:4108–4115PubMedCrossRefGoogle Scholar
  44. Feng H, Zeng Y, Graner MW, Likhacheva A, Katsanis E (2003) Exogenous stress proteins enhance the immunogenicity of apoptotic tumor cells and stimulate antitumor immunity. Blood 101:245–252PubMedCrossRefGoogle Scholar
  45. Flynn GC, Chappell TG, Rothman JE (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245:385–390PubMedGoogle Scholar
  46. Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353:726–730PubMedCrossRefGoogle Scholar
  47. Fourie AM, Sambrook JF, Gething MJ (1994) Common and divergent peptide binding specificities of hsp70 molecular chaperones. J Biol Chem 269:30470–30478PubMedGoogle Scholar
  48. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45PubMedCrossRefGoogle Scholar
  49. Gordon NF, Clark BL (2004) The challenges of bringing autologous HSP-based vaccines to commercial reality. Methods 32:63–69PubMedCrossRefGoogle Scholar
  50. Gragerov A, Zeng L, Zhao X, Burkholder W, Gottesman ME (1994) Specificity of DnaK-peptide binding. J Mol Biol 235:848–854PubMedCrossRefGoogle Scholar
  51. Graner M, Raymond A, Romney D, He L, Whitesell L, Katsanis E (2000) Immunoprotective activities of multiple chaperone proteins isolated frommurine B-cell leukemia/lymphoma. Clin Cancer Res 6:909–915PubMedGoogle Scholar
  52. Graner MW, Zeng Y, Feng H, Katsanis E (2003) Tumor-derived chaperone-rich cell lysates are effective therapeutic vaccines against a variety of cancers. Cancer Immunol Immunother 52:226–234PubMedGoogle Scholar
  53. Gromme M, Neefjes J (2002) Antigen degradation or presentation by MHC class Imolecules via classical and non-classical pathways. Mol Immunol 39:181–202PubMedCrossRefGoogle Scholar
  54. Gross C, Hansch D, Gastpar R, Multhoff G (2003) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384:267–279PubMedCrossRefGoogle Scholar
  55. Gross L (1943) Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res 3:323–326Google Scholar
  56. Grossmann ME, Madden BJ, Gao F, Pang YP, Carpenter JE, McCormick D, Young CY (2004) Proteomics shows hsp70 does not bind peptide sequences indiscriminately in vivo. Exp Cell Res 297:108–117PubMedCrossRefGoogle Scholar
  57. Hauser H, Shen L, Gu QL, Krueger S, Chen SY (2004) Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther 11:924–932PubMedCrossRefGoogle Scholar
  58. Heikema A, Agsteribbe E, Wilschut J, Huckriede A (1997) Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides. Immunol Lett 57:69–74PubMedCrossRefGoogle Scholar
  59. Hoos A, Levey DL (2003) Vaccination with heat shock protein-peptide complexes: from basic science to clinical applications. Expert Rev Vaccines 2:369–379PubMedCrossRefGoogle Scholar
  60. Hsieh CJ, Kim TW, Hung CF, Juang J, Moniz M, Boyd DA, He L, Chen PJ, Chen CH, Wu TC (2004) Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin. Vaccine 22: 3993–4001PubMedGoogle Scholar
  61. Hsu KF, Hung CF, Cheng WF, He L, Slater LA, Ling M, Wu TC (2001) Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Ther 8:376–383PubMedCrossRefGoogle Scholar
  62. Huang C, Yu H, Wang Q, Ma W, Xia D, Yi P, Zhang L, Cao X (2004) Potent antitumor effect elicited by superantigen-linked tumor cells transduced with heat shock protein 70 gene. Cancer Sci 95:160–167PubMedGoogle Scholar
  63. Huang Q, Richmond JF, Suzue K, Eisen HN, Young RA (2000) In vivo cytotoxic T lymphocyte elicitation by mycobacterial heat shock protein 70 fusion proteins maps to a discrete domain and is CD4(+) T cell independent. J Exp Med 191:403–408PubMedGoogle Scholar
  64. Huang XF, Ren W, Rollins L, Pittman P, Shah M, Shen L, Gu Q, Strube R, Hu F, Chen SY (2003) A broadly applicable, personalized heat shock protein-mediated oncolytic tumor vaccine. Cancer Res 63:7321–7329PubMedGoogle Scholar
  65. Ishii T, Udono H, Yamano T, Ohta H, Uenaka A, Ono T, Hizuta A, Tanaka N, Srivastava PK, Nakayama E (1999) Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol 162:1303–1309PubMedGoogle Scholar
  66. Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK (2000) Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 88:232–238PubMedCrossRefGoogle Scholar
  67. Johnson JL, Craig EA (1997) Protein folding in vivo: unraveling complex pathways. Cell 90:201–204PubMedGoogle Scholar
  68. Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183–201PubMedCrossRefGoogle Scholar
  69. Konen-Waisman S, Cohen A, Fridkin M, Cohen IR (1999) Self heat-shock protein (hsp60) peptide serves in a conjugate vaccine against a lethal pneumococcal infection. J Infect Dis 179:403–413PubMedGoogle Scholar
  70. Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G, Pfister K, Multhoff G (2004) Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clin Cancer Res 10:3699–3707PubMedGoogle Scholar
  71. Kumaraguru U, Gouffon CA Jr, Ivey RA 3rd, Rouse BT, Bruce BD (2003) Antigenic peptides complexed to phylogenically diverse hsp70s induce differential immune responses. Cell Stress Chaperones 8:134–143PubMedCrossRefGoogle Scholar
  72. Kuppner MC, Gastpar R, Gelwer S, Nossner E, Ochmann O, Scharner A, Issels RD (2001) The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol 31:1602–1609PubMedCrossRefGoogle Scholar
  73. Lammert E, Arnold D, Nijenhuis M, Momburg F, Hammerling GJ, Brunner J, Stevanovic S, Rammensee HG, Schild H (1997) The endoplasmic reticulum-resident stress protein gp96 binds peptides translocated by TAP. Eur J Immunol 27:923–927PubMedGoogle Scholar
  74. Linderoth NA, Popowicz A, Sastry S (2000) Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen gp96 (Grp94). J Biol Chem 275:5472–5477PubMedCrossRefGoogle Scholar
  75. Linderoth NA, Simon MN, Hainfeld JF, Sastry S (2001) Binding of antigenic peptide to the endoplasmic reticulum-resident protein gp96/GRP94 heat shock chaperone occurs in higher order complexes. Essential role of some aromatic amino acid residues in the peptide-binding site. J Biol Chem 276:11049–11054PubMedCrossRefGoogle Scholar
  76. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677PubMedCrossRefGoogle Scholar
  77. Lukacs KV, Lowrie DB, Stokes RW, Colston MJ (1993) Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors. J Exp Med 178:343–348PubMedCrossRefGoogle Scholar
  78. Lund PA (1995) The roles of molecular chaperones in vivo. Essays Biochem 29:113–123PubMedGoogle Scholar
  79. MacAry PA, Javid B, Floto RA, Smith KG, Oehlmann W, Singh M, Lehner PJ (2004) HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity 20:95–106PubMedCrossRefGoogle Scholar
  80. Manjili MH, Henderson R, Wang XY, Chen X, Li Y, Repasky E, Kazim L, Subjeck JR (2002) Development of a recombinantHSP110-HER-2/neu vaccine using the chaperoning properties of HSP110. Cancer Res 62:1737–1742PubMedGoogle Scholar
  81. Manjili MH, Wang XY, Chen X, Martin T, Repasky EA, Henderson R, Subjeck JR (2003) HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice. J Immunol 171:4054–4061PubMedGoogle Scholar
  82. Manjili MH, Wang XY, MacDonald IJ, Arnouk H, Yang GY, Pritchard MT, Subjeck JR (2004) Cancer immunotherapy and heat-shock proteins: promises and challenges. Expert Opin Biol Ther 4:363–373PubMedCrossRefGoogle Scholar
  83. Massa C, Guiducci C, Arioli I, Parenza M, Colombo MP, Melani C (2004) Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70. Cancer Res 64:1502–1508PubMedCrossRefGoogle Scholar
  84. Mazzaferro V, Coppa J, Carrabba MG, Rivoltini L, Schiavo M, Regalia E, Mariani L, Camerini T, Marchiano A, Andreola S, Camerini R, Corsi M, Lewis JJ, Srivastava PK, Parmiani G (2003) Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9: 3235–3245PubMedGoogle Scholar
  85. Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG (1998) Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med 4:581–587PubMedCrossRefGoogle Scholar
  86. Meng SD, Song J, Rao Z, Tien P, Gao GF (2002) Three-step purification of gp96 from human liver tumor tissues suitable for isolation of gp96-bound peptides. J Immunol Methods 264:29–35PubMedCrossRefGoogle Scholar
  87. Moroi Y, Mayhew M, Trcka J, Hoe MH, Takechi Y, Hartl FU, Rothman JE, Houghton AN (2000) Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc Natl Acad Sci U S A 97:3485–3490PubMedCrossRefGoogle Scholar
  88. Multhoff G (2002) Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 18: 576–585PubMedCrossRefGoogle Scholar
  89. Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, Kampinga HH, Laumbacher B, Johnson J (1999) Heat shock protein 70 (hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 27:1627–1636PubMedCrossRefGoogle Scholar
  90. Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, Hiddemann W (2001) A 14-mer hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6:337–344PubMedCrossRefGoogle Scholar
  91. Nair S, Wearsch PA, Mitchell DA, Wassenberg JJ, Gilboa E, Nicchitta CV (1999) Calreticulin displays in vivo peptide-binding activity and can elicit CTL responses against bound peptides. J Immunol 162:6426–6432PubMedGoogle Scholar
  92. Nicchitta CV, Carrick DM, Baker-Lepain JC (2004) The messenger and the message: gp96 (GRP94)-peptide interactions in cellular immunity. Cell Stress Chaperones 9:325–331PubMedCrossRefGoogle Scholar
  93. Nieland TJ, Tan MC, Monne-van Muijen M, Koning F, Kruisbeek AM, van Bleek GM (1996) Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci U S A 93:6135–6139PubMedCrossRefGoogle Scholar
  94. Noessner E, Gastpar R, Milani V, Brandl A, Hutzler PJ, Kuppner MC, Roos M, Kremmer E, Asea A, Calderwood SK, Issels RD (2002) Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol 169:5424–5432PubMedGoogle Scholar
  95. Novellino L, Castelli C, Parmiani G (2004) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207PubMedGoogle Scholar
  96. Oh HJ, Chen X, Subjeck JR (1997) hsp110 protects heat-denatured proteins and confers cellular thermoresistance. J Biol Chem 272:31636–31640PubMedGoogle Scholar
  97. Oki Y, Younes A (2004) Heat shock protein-based cancer vaccines. Expert Rev Vaccines 3:403–411PubMedCrossRefGoogle Scholar
  98. Pardoll D, Allison J (2004) Cancer immunotherapy: breaking the barriers to harvest the crop. Nat Med 10: 887–892PubMedGoogle Scholar
  99. Park J, Easton DP, Chen X, MacDonald IJ, Wang XY, Subjeck JR (2003) The chaperoning properties of mouse grp170, a member of the third family of hsp70 related proteins. Biochemistry 42:14893–14902PubMedGoogle Scholar
  100. Parmiani G, Testori A, Maio M, Castelli C, Rivoltini L, Pilla L, Belli F, Mazzaferro V, Coppa J, Patuzzo R, Sertoli MR, Hoos A, Srivastava PK, Santinami M (2004) Heat shock proteins and their use as anticancer vaccines. Clin Cancer Res 10:8142–8146PubMedGoogle Scholar
  101. Parsell DA, Taulien J, Lindquist S (1993) The role of heat-shock proteins in thermotolerance. Philos Trans R Soc Lond B Biol Sci 339:279–285; discussion 285-286PubMedGoogle Scholar
  102. Pavlenko M, Roos AK, Lundqvist A, Palmborg A, Miller AM, Ozenci V, Bergman B, Egevad L, Hellstrom M, Kiessling R, Masucci G, Wersall P, Nilsson S, Pisa P (2004) A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br J Cancer 91: 688–694PubMedGoogle Scholar
  103. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360PubMedCrossRefGoogle Scholar
  104. Rafiee M, Kanwar JR, Berg RW, Lehnert K, Lisowska K, Krissansen GW (2001) Induction of systemic antitumor immunity by gene transfer of mammalian heat shock protein 70.1 into tumors in situ. Cancer Gene Ther 8: 974–981PubMedCrossRefGoogle Scholar
  105. Rapp UK, Kaufmann SH (2004) DNA vaccination with gp96-peptide fusion proteins induces protection against an intracellular bacterial pathogen. Int Immunol 16:597–605PubMedCrossRefGoogle Scholar
  106. Ren W, Strube R, Zhang X, Chen SY, Huang XF (2004) Potent tumor-specific immunity induced by an in vivo heat shock protein-suicide gene-based tumor vaccine. Cancer Res 64:6645–6651PubMedGoogle Scholar
  107. Restifo NP, Esquivel F, Asher AL, Stotter H, Barth RJ, Bennink JR, Mule JJ, Yewdell JW, Rosenberg SA (1991) Defective presentation of endogenous antigens by amurine sarcoma. Implications for the failure of an anti-tumor immune response. J Immunol 147:1453–1459PubMedGoogle Scholar
  108. Rivoltini L, Castelli C, Carrabba M, Mazzaferro V, Pilla L, Huber V, Coppa J, Gallino GGoogle Scholar
  109. Scheibenbogen C, Squarcina P, Cova A, Camerini R, Lewis JJ, Srivastava PK, Parmiani G (2003) Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma-and colon carcinoma-specific T cells. J Immunol 171:3467–3474PubMedGoogle Scholar
  110. Roman E, Moreno C (1996) Synthetic peptides non-covalently bound to bacterial hsp 70 elicit peptide-specific T-cell responses in vivo. Immunology 88:487–492PubMedCrossRefGoogle Scholar
  111. Rudiger S, Buchberger A, Bukau B (1997) Interaction of hsp70 chaperones with substrates. Nat Struct Biol 4:342–349PubMedGoogle Scholar
  112. Rutherford SL, Lindquist S (1998) hsp90 as a capacitor formorphological evolution. Nature 396:336–342PubMedCrossRefGoogle Scholar
  113. Sciandra JJ, Subjeck JR (1983) The effects of glucose on protein synthesis and thermosensitivity in Chinese hamster ovary cells. J Biol Chem 258:12091–12093PubMedGoogle Scholar
  114. Sciandra JJ, Subjeck JR, Hughes CS (1984) Induction of glucose-regulated proteins during anaerobic exposure and of heat-shock proteins after reoxygenation. Proc Natl Acad Sci U S A 81:4843–4847PubMedGoogle Scholar
  115. Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes RE, Schild H (2000a) The heat shock protein gp96 induces maturation of dendritic cells and downregulation of its receptor. Eur J Immunol 30: 2211–2215PubMedGoogle Scholar
  116. Singh-Jasuja H, Toes RE, Spee P, Munz C, Hilf N, Schoenberger SP, Ricciardi-Castagnoli P, Neefjes J, Rammensee HG, Arnold-Schild D, Schild H (2000b) Cross-presentation of glycoprotein 96-associated antigens onmajor histocompatibility complex class Imolecules requires receptor-mediated endocytosis. J Exp Med 191: 1965–1974PubMedGoogle Scholar
  117. Skowronek MH, Hendershot LM, Haas IG (1998) The variable domain of nonassembled Ig light chains determines both their half-life and binding to the chaperone BiP. Proc Natl Acad Sci U S A 95:1574–1578PubMedCrossRefGoogle Scholar
  118. Smith HA, Klinman DM (2001) The regulation of DNA vaccines. Curr Opin Biotechnol 12:299–303PubMedCrossRefGoogle Scholar
  119. Solheim JC (1999) Class I MHC molecules: assembly and antigen presentation. Immunol Rev 172:11–19PubMedGoogle Scholar
  120. Spee P, Neefjes J (1997) TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur J Immunol 27:2441–2449PubMedGoogle Scholar
  121. Spee P, Subjeck J, Neefjes J (1999) Identification of novel peptide binding proteins in the endoplasmic reticulum: ERp72, calnexin, and grp170. Biochemistry 38:10559–10566PubMedCrossRefGoogle Scholar
  122. Srivastava P (2002a) Interaction of heat shock proteinswith peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425PubMedCrossRefGoogle Scholar
  123. Srivastava P (2002b) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2: 185–194PubMedCrossRefGoogle Scholar
  124. Srivastava PK (2000) Immunotherapy of human cancer: lessons from mice. Nat Immunol 1:363–366PubMedCrossRefGoogle Scholar
  125. Srivastava PK, DeLeo AB, Old LJ (1986) Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci U S A 83:3407–3411PubMedGoogle Scholar
  126. Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8:657–665PubMedCrossRefGoogle Scholar
  127. Srivastava PK, Udono H, Blachere NE, Li Z (1994) Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39:93–98PubMedCrossRefGoogle Scholar
  128. Stirling PC, Lundin VF, Leroux MR (2003) Getting a grip on non-native proteins. EMBO Rep 4:565–570PubMedCrossRefGoogle Scholar
  129. Strbo N, Oizumi S, Sotosek-Tokmadzic V, Podack ER (2003) Perforin is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity 18:381–390PubMedCrossRefGoogle Scholar
  130. Subjeck JR, Shyy TT (1986) Stress protein systems of mammalian cells. Am J Physiol 250:C1–C17PubMedGoogle Scholar
  131. Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588PubMedGoogle Scholar
  132. Suzue K, Young RA (1996) Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. J Immunol 156:873–879PubMedGoogle Scholar
  133. Suzue K, Zhou X, Eisen HN, Young RA (1997) Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci U S A 94:13146–13151PubMedCrossRefGoogle Scholar
  134. Takenaka IM, Leung SM, McAndrew SJ, Brown JP, Hightower LE (1995) Hsc70-binding peptides selected froma phage display peptide library that resemble organellar targeting sequences. J Biol Chem 270:19839–19844PubMedGoogle Scholar
  135. Tamura Y, Peng P, Liu K, Daou M, Srivastava PK (1997) Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278:117–120PubMedCrossRefGoogle Scholar
  136. Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398PubMedCrossRefGoogle Scholar
  137. Tsan MF, Gao B (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76:514–519PubMedCrossRefGoogle Scholar
  138. Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396PubMedCrossRefGoogle Scholar
  139. Udono H, Srivastava PK (1994) Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol 152:5398–5403PubMedGoogle Scholar
  140. Udono H, Yamano T, Kawabata Y, Ueda M, Yui K (2001) Generation of cytotoxic T lymphocytes by MHC class I ligands fused to heat shock cognate protein 70. Int Immunol 13:1233–1242PubMedCrossRefGoogle Scholar
  141. Ueda G, Tamura Y, Hirai I, Kamiguchi K, Ichimiya S, Torigoe T, Hiratsuka H, Sunakawa H, Sato N (2004) Tumor-derived heat shock protein 70-pulsed dendritic cells elicit tumorspecific cytotoxic T lymphocytes (CTLs) and tumor immunity. Cancer Sci 95:248–253PubMedCrossRefGoogle Scholar
  142. Ullrich SJ, Robinson EA, Law LW, Willingham M, Appella E (1986) A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci USA 83:3121–3125PubMedGoogle Scholar
  143. Ulmer JB, Deck RR, Dewitt CM, Donnhly JI, Liu MA (1996a) Generation of MHC class I-restricted cytotoxic T lymphocytes by expression of a viral protein in muscle cells: antigen presentation by non-muscle cells. Immunology 89:59–67PubMedCrossRefGoogle Scholar
  144. Ulmer JB, Sadoff JC, Liu MA (1996b) DNA vaccines. Curr Opin Immunol 8:531–536PubMedCrossRefGoogle Scholar
  145. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002a) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112PubMedGoogle Scholar
  146. Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, Da Costa C, Rammensee HG, Wagner H, Schild H (2002b) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277:20847–20853PubMedGoogle Scholar
  147. Vanaja DK, Grossmann ME, Celis E, Young CY (2000) Tumor prevention and antitumor immunity with heat shock protein 70 induced by 15-deoxy-delta12,14-prostaglandin J2 in transgenic adenocarcinoma of mouse prostate cells. Cancer Res 60:4714–4718PubMedGoogle Scholar
  148. Vogen S, Gidalevitz T, Biswas C, Simen BB, Stein E, Gulmen F, Argon Y (2002) Radicicol-sensitive peptide binding to the N-terminal portion of GRP94. J Biol Chem 277:40742–40750PubMedCrossRefGoogle Scholar
  149. Wang XY, Chen X, Manjili MH, Repasky E, Henderson R, Subjeck JR (2003) Targeted immunotherapy using reconstituted chaperone complexes of heat shock protein 110 and melanoma-associated antigen gp100. Cancer Res 63:2553–2560PubMedGoogle Scholar
  150. Wang XY, Kazim L, Repasky EA, Subjeck JR (2001) Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. J Immunol 166: 490–497PubMedGoogle Scholar
  151. Wang XY, Li Y, Manjili MH, Repasky EA, Pardoll DM, Subjeck JR (2002a) hsp110 over-expression increases the immunogenicity of the murine CT26 colon tumor. Cancer Immunol Immunother 51:311–319PubMedCrossRefGoogle Scholar
  152. Wang Y, Kelly CG, Singh M, McGowan EG, Carrara AS, Bergmeier LA, Lehner T (2002b) Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169:2422–2429PubMedGoogle Scholar
  153. Wassenberg JJ, Dezfulian C, Nicchitta CV (1999) Receptor mediated and fluid phase pathways for internalization of the ER hsp90 chaperone GRP94 in murine macrophages. J Cell Sci 112:2167–175PubMedGoogle Scholar
  154. Wearsch PA, Nicchitta CV (1996) Endoplasmic reticulum chaperone GRP94 subunit assembly is regulated through a defined oligomerization domain. Biochemistry 35:16760–16769PubMedCrossRefGoogle Scholar
  155. Wearsch PA, Nicchitta CV (1997) Interaction of endoplasmic reticulum chaperone GRP94 with peptide substrates is adenine nucleotide-independent. J Biol Chem 272:5152–5156PubMedGoogle Scholar
  156. Wearsch PA, Voglino L, Nicchitta CV (1998) Structural transitions accompanying the activation of peptide binding to the endoplasmic reticulum hsp90 chaperone GRP94. Biochemistry 37:5709–5719PubMedCrossRefGoogle Scholar
  157. Welch WJ (1993) Heat shock proteins functioning as molecular chaperones: their roles in normal and stressed cells. Philos Trans R Soc Lond B Biol Sci 339:327–333PubMedGoogle Scholar
  158. Whelan SA, Hightower LE (1985) Differential induction of glucose-regulated and heat shock proteins: effects of pH and sulfhydryl-reducing agents on chicken embryo cells. J Cell Physiol 125:251–258PubMedCrossRefGoogle Scholar
  159. Yamazaki K, Nguyen T, Podack ER (1999) Cutting edge: tumor secreted heat shock-fusion protein elicits CD8 cells for rejection. J Immunol 163:5178–5182PubMedGoogle Scholar
  160. Ye J, Chen GS, Song HP, Li ZS, Huang YY, Qu P, Sun YJ, Zhang XM, Sui YF (2004) Heat shock protein 70 /MAGE-1 tumor vaccine can enhance the potency of MAGE-1-specific cellular immune responses in vivo. Cancer Immunol Immunother 53:825–834PubMedCrossRefGoogle Scholar
  161. Yedavelli SP, Guo L, Daou ME, Srivastava PK, Mittelman A, Tiwari RK (1999) Preventive and therapeutic effect of tumor derived heat shock protein, gp96, in an experimental prostate cancer model. Int J Mol Med 4:243–248PubMedGoogle Scholar
  162. Zeng Y, Feng H, Graner MW, Katsanis E (2003) Tumor-derived, chaperone-rich cell lysate activates dendritic cells and elicits potent antitumor immunity. Blood 101:4485–4491PubMedCrossRefGoogle Scholar
  163. Zeng Y, Graner MW, Thompson S, Marron M, Katsanis E (2005) Induction of BCR-ABL specific immunity following vaccination with chaperone rich cell lysates (CRCL) derived from BCR-ABL+ tumor cells. Blood 105:2016–2022PubMedGoogle Scholar
  164. Zheng H, Dai J, Stoilova D, Li Z (2001) Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity. J Immunol 167:6731–6735PubMedGoogle Scholar
  165. Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614PubMedGoogle Scholar
  166. Zugel U, Sponaas AM, Neckermann J, Schoel B, Kaufmann SH (2001) gp96-Peptide vaccination of mice against intracellular bacteria. Infect Immun 69:4164–4167PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Department of Cellular Stress Biology and Urologic Oncology, Roswell Park Cancer InstituteBuffaloUSA
  2. 2.Department of Immunology, Roswell Park Cancer InstituteBuffaloUSA

Personalised recommendations