Advertisement

Further Development of a High Precision Two-Frame Inertial Navigation System for Application in Airborne Gravimetry

  • Tim H. Stelkens-Kobsch

Summary

The Institute of Flight Guidance (IFF) of the Technical University of Braunschweig (TU BS) is involved in the development of airborne gravimetry since 1985. Fundamental examinations of airborne gravimeters were carried out between 1991 and 1993. In 1998 a high-precision two-frame inertial platform and a gravimeter sensor were purchased and modified for airborne application in cooperation with the Russian manufacturer Elektropribor.

Successful flight tests have been executed in the recent years. So far the resolution achieved is 2 km with a standard deviation of 3mGal1 (resp. 5km, 1mGal). The two-frame inertial platform was extended to a three-frame INS by mounting a ring laser gyro on top of the platform. The gyro provides an additional degree of freedom (yaw) around the vertical axis.

Since 2001 the IFF was involved in the programme GEOTECHNOLOGIEN funded by the German Federal Ministry of Education and Research. The goal of the project, which ended in 2005 was to develop an airborne gravimetry system with a resolution of 1mGal for wavelengths of 1 km.

Key words

Airborne gravimetry gravimeter inertial platform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelmoula F (1998a) Neue Konzepte und Lösungsansätze bei der Fluggravimetrie. Progress in geodetic science at GW98, 9–16, Shaker Verlag, AachenGoogle Scholar
  2. Abdelmoula F (1998b) Probleme und Lösungsansätze bei der Fluggravimetrie. 1. Braunschweiger Symposium für Flugmesstechnik, BraunschweigGoogle Scholar
  3. Abdelmoula F (2000) Ein Beitrag zur Bestimmung der Erdbeschleunigungsanomalien an Bord eines Flugzeuges. Dissertation. Shaker Verlag, AachenGoogle Scholar
  4. Bruton A M (2000) Improving the Accuracy and Resolution of SINS/DGPS Airborne Gravimetry. UCGE Reports Number 20145. University of Calgary, Calgary, AlbertaGoogle Scholar
  5. Hein G W (1995) Progress in Airborne Gravimetry: Solved, Open and Critical Problems. Proc. of the IAG Symposium on Airborne Gravity Field Determination. Boulder, Colorado, USAGoogle Scholar
  6. Hinze J O (1975) Turbulence. 2nd Edition. McGraw-Hill Book Company, New YorkGoogle Scholar
  7. Kaufmann W (1963) Technische Hydro-und Aerodynamik. Springer-Verlag, Berlin Göttingen HeidelbergGoogle Scholar
  8. Olesen A V, Forsberg R, Gidskehaug A (1997) Airborne Gravimetry Using the LaCoste & Romberg Gravimeter — an Error Analysis. In: M.E. Cannon and G. Lechapelle (eds.). Proc. Int. Symp. on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, Canada, June 3–6, 1997, Publ.Univ. of Calgary, pp. 613–618Google Scholar
  9. Schänzer G (1985) Abschätzung von stochastischen Böenlasten unter Berücksichtigung instationärer Luftkräfte. Zeitung Flug-wiss.Weltraumforschung 9, Heft 3Google Scholar
  10. Schänzer G, Abdelmoula F (1999) Fluggravimeter; Zwischenbericht Sonderforschungsbereich Flugmesstechnik SFB 420Google Scholar
  11. Schänzer G (2000) An Approach to Utilising In-Flight Gravimetry in Geodesy and Geophysical Exploration. Aerospace Science and Technology, subm. February 2000Google Scholar
  12. Schänzer G (2000) Fluggravimeter hoher Auflösung. Geodätische Woche, PotsdamGoogle Scholar
  13. Wei M, Schwarz K P (1998) Flight Test Results from a Strapdown Airborne Gravity System. Journal of Geodesy 72:323–332CrossRefGoogle Scholar
  14. Zhang Q J (1995) Development of a GPS-aided Inertial Platform for an Airborne Scalar Gravity System. PhD Thesis. University of Calgary, Calgary, AlbertaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tim H. Stelkens-Kobsch
    • 1
  1. 1.Institute of Flight GuidanceTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations