Advertisement

The GEOsensor Project: Rotations — a New Observable for Seismology

  • Ulrich Schreiber
  • Heiner Igel
  • Alain Cochard
  • Alexander Velikoseltsev
  • Asher Flaws
  • Bernhard Schuberth
  • Wolfgang Drewitz
  • Frieder Müller

Summary

Over the last 40 years ring laser gyroscopes became one of the most important instruments in the field of inertial navigation and precise rotation measurements. They have a high resolution for angular velocities, a very good scale factor stability and a wide dynamic range. These properties made them suitable for aircraft and autonomous submarine navigation. Over the last decade we have developed several very large perimeter ring laser gyroscopes for the application in geodesy and geophysics (Schreiber et al., 2001). Because of a substantial upscaling of these ring lasers, their sensitivity to rotations has been increased by at least 5 orders of magnitudes. At the same time the instrumental drift was reduced by about the same amount. This progress in rotational sensor technology led to the successful detection of rotational signals caused by earthquakes (Pancha et al., 2000) several thousands kilometers away. These observations stimulated the development of a highly sensitive ring laser gyro for specific seismological applications. The GEOsensor provides rotational motions along with the usual translational motions at a high data acquisition rate of at least 20 Hz. Observations of seismic induced rotations show that they are consistent in phase and amplitude with the collocated recordings of transverse accelerations obtained from a standard seismometer over a wide range of distances and frequencies.

Key words

ring laser seismology rotation measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K., Richards, P. G. (2002) Quantitative Seismology, 2nd Edition, University Science BooksGoogle Scholar
  2. Aronowitz, F. (1971) The laser gyro. Laser applications, Vol. 1, edited by M. Ross, 133–200, Academic Press, New YorkGoogle Scholar
  3. Bouchon, M., and Aki, K. (1982) Strain, tilt and rotation associated with strong ground motion in the vicinity of earthquake faults. Bull. Seismol. Soc. Amer., 72:1717–1738Google Scholar
  4. Cochard, A., Igel, H. (2003) What can rotational measurements teach us about earthquake rupture histories? Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract S42D-0200Google Scholar
  5. Cochard, A., Igel, H. (2004) What can rotational measurements teach us about earthquake rupture histories? Geophysical Research Abstracts (EGU Meeting), 6, 06359Google Scholar
  6. Cochard, A., Igel, H., Flaws, A., Schuberth, B., Wassermann, J., Suryanto, W. (2005) Rotational motions in seismology, in preparation, to be published in “Earthquake source asymmetry, structural media and rotation effects” eds. Teisseyre et al., Springer VerlagGoogle Scholar
  7. Igel, H., Nissen-Meyer, T., Jahnke, G. (2002) Wave propagation in 3-D spherical section: effects of subduction zones, Phys. Earth. Planet. Int., 132:219–234CrossRefGoogle Scholar
  8. Igel, H., Flaws, A., Velikoseltsev, A., Cochard, A., Schreiber, K. U. (2004) Comparison of rotational and translational motions induced by distant large earthquakes, Geophysical Research Abstracts (EGU Meeting), 6, 06487Google Scholar
  9. Igel, H., Schreiber, K. U., Flaws, A., Schuberth, B., Velikoseltsev, A. Cochard, A. (2005a) Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003, Geophys. Res. Lett., VOL. 32, L08309, doi:10.1029/2004GL022336CrossRefGoogle Scholar
  10. Igel, H., Cochard, A., Schuberth, B., Flaws, A. Velikoseltsev, A., Schreiber K. U. (2005b) Rotational ground motions: a new observable for seismology? Geophysical Research Abstracts (EGU Meeting), 7Google Scholar
  11. Komatitsch, D., Tromp, J. (2002a) Spectral-element simulations of global seismic wave propagation, Part I: Validation, Geophys. J. Int., 149:390–412Google Scholar
  12. Komatitsch, D., Tromp, J. (2002b) Spectral-element simulations of global seismic wave propagation, Part II: 3-D models, oceans, rotation, and gravity, Geophys. J. Int., 150:303–318Google Scholar
  13. McLeod, D. P., Stedman, G. E., Webb, T. H., Schreiber K. U. (1998) Comparison of standard and ring laser rotational seismograms, Bull. Seism. Soc. Amer., 88:1495–1503Google Scholar
  14. McLeod, D. P., King, B. T., Stedman, G. E., Schreiber, K. U., and Webb T. H. (2001) Autoregressive analysis for the detection of earthquakes with a ring laser gyroscope; Fluctuations and Noise Letters, Vol. 1, No. 1:R41–R50CrossRefGoogle Scholar
  15. Mikumo, T., Aki, K. (1973) Determination of local phase velocity by intercomparison of seismograms from strain and pendulum instruments, J. Geophys. Res., 69: 721–731CrossRefGoogle Scholar
  16. Pancha, A., Webb, T.H., Stedman, G. E., McLeod, D.P., and Schreiber, U. (2000) Ring laser detection of rotations from teleseismic waves. Geophys. Res. Lett, 27:3553–3556CrossRefGoogle Scholar
  17. Schreiber, U., Schneider, M., Rowe, C.H., Stedman, G. E., and Schlüter, W. (2001) Aspects of Ring Lasers as Local Earth Rotation Sensors. Surveys in Geophysics, Vol. 22:(5–6) 603–611CrossRefGoogle Scholar
  18. Schreiber, U., Velikoseltsev, A., Stedman, G. E., Hurst, R. B., Klügel, T. (2004) Large Ring Laser Gyros as High Resolution Sensors for Applications in Geoscience. Proceedings of the 11th International Conference on Integrated Navigation Systems, St. Petersburg, 326–331Google Scholar
  19. Schuberth, B., Igel, H., Wassermann, J., Cochard, A., Schreiber, K. U. (2004) Rotational Motions from Teleseismic Events-Modelling and Observations, Eos Trans. AGU, Fall Meet. Suppl. Abstract S42D-0200Google Scholar
  20. Stedman, G. E., Li, Z., Bilger, H. R. (1995) Sideband analysis and seismic detection in large ring lasers. Appl. Opt., 34:7390–7396CrossRefGoogle Scholar
  21. Stedman, G. E. (1997) Ring laser tests of fundamental physics and geophysics. Rep. Progr. Phys. 60:615–688CrossRefGoogle Scholar
  22. Takeo, M., Ito, H. M. (1997) What can be learned from rotational motions excited by earthquakes? Geophys. J. Int., 129:319–329Google Scholar
  23. Takeo, M. (1998) Ground rotational motions recorded in near-source region of earthquakes, Geophys. Res. Lett., 25:789–792CrossRefGoogle Scholar
  24. Trifunac, M. D., Todorovska, M. I. (2001) A note on the usable dynamic range of accelerographs recording translation, Soil Dyn. Earth. Eng., 21(4):275–286CrossRefGoogle Scholar
  25. Wielandt, E. (1993) Propagation and structural interpretation of non-plane waves, Geophys. J. Int., 113: 45–53Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ulrich Schreiber
    • 1
  • Heiner Igel
    • 2
  • Alain Cochard
    • 2
  • Alexander Velikoseltsev
    • 1
  • Asher Flaws
    • 3
  • Bernhard Schuberth
    • 2
  • Wolfgang Drewitz
    • 4
  • Frieder Müller
    • 4
  1. 1.Forschungseinrichtung Satellitengeodäsie der TU-MünchenMünchen
  2. 2.Department für Geo- und Umweltwissenschaften, Sektion GeophysikLudwig-Maximilians-Universität MünchenMünchen
  3. 3.Department of Physics and AstronomyUniversity of CanterburyNew Zealand
  4. 4.FMB Feinwerk- und Messtechnik GmbHBerlin

Personalised recommendations