GOCE Gravity Field Modeling: Computational Aspects — Free Kite Numbering Scheme

  • Christian Boxhammer
  • Wolf-Dieter Schuh

Summary

The modelling of the Earth’s gravity field by means of a high-resolving spherical harmonic analysis is a numerically demanding task, especially when realistic (non gridded) data sets are analysed. The free kite numbering scheme, presented in the current article, allows a flexible combination of models. It is focussed, in particular, on the combination of a model containing rotation-symmetrical, high-resolving data with a second model comprising fully correlated data, which allows the determination of the lower degrees. This kite scheme may, depending on the degree of conformance with rotation symmetry, be used both with a direct solver and to improve the convergence rate of an iterative solver.

Key words

GOCE mission spherical harmonic analysis preconditioner kite numbering scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auzinger, T and Schuh, W-D (1998) High-degree spherical harmonic analysis combining gridded and random distributed data sets. Phys. Chem. Earth, 23:19–23CrossRefGoogle Scholar
  2. Balmino, G (1993) The spectra of the topography of the earth, venus and mars. Geophys. Res. Lett., 20:1063–1066Google Scholar
  3. Bosch, W (1993) A rigorous least squares combination of low and high degree spherical harmonics. In Presented Paper on “IAG General Meeting”. Beijing 1993Google Scholar
  4. Colombo, O (1981) Numerical methods for harmonic analysis on the sphere. Reports of the Department of Geodetic Science. Ohio State University (OSU), Ohio. No. 310Google Scholar
  5. Heiskanen, W and Moritz, H (2000) Physical Geodesy. Institute of Physical Geodesy, Technical University Graz, ReprintGoogle Scholar
  6. Lemoine, F, Smith, D, Kunz, L, Smith, R, Pavlis, E, Pavlis, N, Klosko, S, Chinn, D, Torrence, M, Williamson, R, Cox, C, Rachlin, K, Wang, Y, Rapp, R, and Nerem, R (1996) The development of the nasa gsfc and nima joint geopotential model. In Proceedings of the “International Symposium on Gravity, Geoid, and Marine Geodesy”. Tokyo, JapanGoogle Scholar
  7. Rapp, R (1994) The Use of Potential Coefficient Models in Computing Geoid Undulations. Lecture Notes of the International School for the “Determination and Use of the Geoid” (Oct. 10–15, 1994), MilanoGoogle Scholar
  8. Rapp, R, Wang, Y, and Pavlis, N (1991) The Ohio state 1991 geopotential and sea surface topography harmonic coefficient models. Reports of the Department of Geodetic Science. Ohio State University (OSU), Ohio. No. 410Google Scholar
  9. Reigber, C, Balmino, G, Schwintzer, P, Biancale, R, Bode, A, Lemoine, J-M, König, R, Loyer, S, Neumayer, H, Marty, J-C, Barthelmes, F, Perosanz, F, and Zhu, S (2002) A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophysical Research Letters, 29(14):10.1029/2002GL015064Google Scholar
  10. Reigber, C, Schwintzer, P, Neumayer, K-H, Barthelmes, F, König, R, Förste, C, Balmino, G, Biancale, R, Lemoine, J-M, Loyer, S, Bruinsma, S, Perosanz, F, and Fayard, T (2003) The CHAMP-only earth gravity field model EIGEN-2. Advances in Space Research, 31(8):1883–1888CrossRefGoogle Scholar
  11. Reigber, C, Jochmann, H, Wünsch, J, Petrovic, S, Schwintzer, P, Barthelmes, F, Neumayer, K-H, König, R, Förste, C, Balmino, G, Biancale, R, Lemoine, J-M, Loyer, S, and Perosanz, F (2004) Earth gravity field and seasonal variability from CHAMP. In C. Reigber, H. Lühr, P. Schwintzer, and J. Wickert, editors, Earth Observation with CHAMP-Results from Three Years in Orbit, pages 25–30, Berlin. SpringerGoogle Scholar
  12. Rummel, R, Sansò, F, van Gelderen, M, Brovelli, M, Koop, R, Miggliaccio, F, Schrama, E, and Scerdote, F (1993). Spherical harmonic analysis of satellite gradiometry. Netherlands Geodetic Commission, New Series, 39Google Scholar
  13. Schuh, W-D (1996a) Least squares adjustment of high degree spherical harmonics. In m. Jacobsen, editor, Inverse Methods-Interdisciplinary Elements of Methodology, Computation and Application, Lecture Notes in Earth Sciences 63, pages 276–283, Heidelberg. SpringerGoogle Scholar
  14. Schuh, W-D (1996b) Tailored numerical solution strategies for the global determination of the earth’s gravity field. Mitteilungen der Geodätischen Institute der TU, Graz. Folge 81Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Boxhammer
    • 1
  • Wolf-Dieter Schuh
    • 1
  1. 1.Institute of Theoretical GeodesyUniversity of BonnBonnGermany

Personalised recommendations