Nikolai Nikolaevich Bogolyubov — Mathematician by the Grace of God

  • V. S. Vladimirov


Manifold Covariance Hull Boulder Chalk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. N. Bogoliubov. Sur quelques méthodes nouvelles dans le Calcul des Variations. Ann. Mat. Pura Appl. (4), 1929–1930, 7–8, 249–271.Google Scholar
  2. [2]
    A. N. Bogolyubov. N. N. Bogolyubov. Life and Work. Dubna, 1996 (Russian).Google Scholar
  3. [3]
    N. N. Bogolyubov. Selected Works. Part I. Dynamical Theory, 1990; Part II. Quantum and Classical Statistical Mechanics, 1991; Part III. Nonlinear Mechanics and Pure Mathematics, 1995; Part IV. Quantum Field Theory, 1995. London: Gordon & Breach.Google Scholar
  4. [4]
    N. N. Bogolyubov. Selected Works in Three Volumes. Kiev: Naukova Dumka, 1969–1971 (Russian).MATHGoogle Scholar
  5. [5]
    N. N. Bogolyubov, Yu. A. Mitropol’skii. Asymptotic Methods in the Theory of Nonlinear Oscillations, 2nd edition. New York: Gordon & Breach, 1962.Google Scholar
  6. [6]
    N. N. Bogolyubov, Yu. A. Mitropol’skii, A. M. Samoilenko. The Method of Accelerated Convergence in Nonlinear Mechanics. Kiev: Naukova Dumka, 1969 (Russian).Google Scholar
  7. [7]
    Yu. A. Mitropol’skii. On Bogolyubov’s work in the field of nonlinear mechanics. Proc. Steklov Inst. Math., 2000, 228, 11–17.Google Scholar
  8. [8]
    D. V. Shirkov. Reminiscences of N. N. In: Nikolai Nikolaevich Bogolyubov. Mathematician and Physicist. Dubna, 1994, 180–197 (Russian).Google Scholar
  9. [9]
    L. D. Faddeev. What is modern mathematical physics. Proc. Steklov Inst. Math., 1999, 226, 1–4.MATHGoogle Scholar
  10. [10]
    V. S. Vladimirov, A. A. Logunov. A brief essay on scientific activity. In: Nikolai Nikolaevich Bogolyubov. Dubna, 1989, 7–21 (Russian).Google Scholar
  11. [11]
    N. N. Bogolyubov, M. K. Polivanov. Fields and quanta. Quantum field theory — the science of elementary particles and their interactions. In: Through the Eyes of a Scientist. Moscow: USSR Academy of Sciences, 1963, 158–173 (Russian).Google Scholar
  12. [12]
    Introductory speech of Academician N. N. Bogolyubov, Chairman of the Organizing Committee. In: Proceedings of the Sixth International Conference on Problems of Quantum Field Theory (Alushta, 1981). Dubna, 1981, 5–6 (Russian).Google Scholar
  13. [13]
    N. N. Bogolyubov. On Some Statistical Methods in Mathematical Physics. Kiev: Ukrainian SSR Academy of Sciences, 1945 (Russian).Google Scholar
  14. [14]
    N. N. Bogolyubov. Problems of Dynamical Theory in Statistical Physics. Moscow-Leningrad: GITTL (State Publishing House for Technical and Theoretical Literature), 1946 (Russian).Google Scholar
  15. [15]
    N. N. Bogolyubov. Lectures on quantum statistics. In: Selected Works in Three Volumes, Vol. II. Kiev: Naukova Dumka, 1970, 287–493 (Russian).Google Scholar
  16. [16]
    N. N. Bogolyubov. On the theory of superfluidity. Izv. Akad. Nauk SSSR, Ser. Fiz., 1948, 11(1), 77–90 (Russian).Google Scholar
  17. [17]
    N. N. Bogolyubov. On a new method in the theory of superconductivity. I; III. Zh. Eksp. Teor. Fiz., 1958, 34(1), 58–65; 73–79 (Russian).MATHGoogle Scholar
  18. [18]
    N. N. Bogolyubov. Quasi-means in problems of statistical mechanics. In: Selected Works in Three Volumes, Vol. III. Kiev: Naukova Dumka, 1970, 174–243 (Russian).Google Scholar
  19. [19]
    N. N. Bogolyubov, D. V. Shirkov. Introduction to Quantum Field Theory. Moscow: Gostekhizdat, 1957; 2nd, corrected edition, Moscow: Nauka, 1973 (Russian).Google Scholar
  20. [20]
    N. N. Bogolyubov, B. V. Medvedev, M. K. Polivanov. Questions of the Theory of Dispersion Relations. Moscow: GIFML (State Publishing House for Physico-Mathematical Literature), 1958 (Russian); English translation: Laurence Laboratory, 1959.Google Scholar
  21. [21]
    The Hilbert Problems. Moscow: Nauka, 1969 (Russian).Google Scholar
  22. [22]
    A. Salam. My meetings with N.N. Bogolyubov. In: Nikolai Nikolaevich Bogolyubov. Mathematician and Physicist. Dubna, 1994, 110–111.Google Scholar
  23. [23]
    H.-J. Bremermann, R. Oehme, J.G. Taylor. Proof of dispersion relations in quantum field theories. Phys. Rev., 1959, 109(6), 2178–2190.MathSciNetCrossRefGoogle Scholar
  24. [24]
    R. Oehme. Dispersion relations in gauge theories with confinement. In: Quanta, Relativity, Gravitation. Proceedings of the Eighteenth Workshop on High Energy Physics and Field Theory. Protvino, 1996, 275–282.Google Scholar
  25. [25]
    V. S. Vladimirov. Methods in the Theory of Functions of Several Complex Variables. Moscow: Nauka, 1964 (Russian); English translation: MIT Press, 1966.Google Scholar
  26. [26]
    V. S. Vladimirov, V. V. Zharinov, A. G. Sergeev. Bogolyubov’s “edge of the wedge” theorem, its development and applications. Russ. Math. Surveys, 1994, 49(5), 51–65.MATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    A. A. Gonchar. On Bogolyubov’s “edge of the wedge” theorem. Proc. Steklov Inst. Math., 2000, 228, 18–24.MATHMathSciNetGoogle Scholar
  28. [28]
    N. N. Bogolyubov, V. S. Vladimirov. On some mathematical problems of quantum field theory. In: Proceedings of the International Congress of Mathematicians (Edinburgh, 1958). Cambridge University Press, 1960, 19–32.Google Scholar
  29. [29]
    D.V. Shirkov, V. S. Vladimirov, A. A. Logunov. Theoretical studies of dispersion relations. In: Ninth International Conference on High-Energy Physics (Kiev, July 1959). Moscow, 1961, 453–464 (Russian).Google Scholar
  30. [30]
    N. N. Bogolyubov, V. S. Vladimirov, A. N. Tavkhelidze. On self-similar asymptotics in quantum field theory. Teoret. Matem. Fiz., 1972, 12(3), 305–330 (Russian).Google Scholar
  31. [31]
    V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zav’yalov. Multidimensional Tauberian Theorems for Generalized Functions. Moscow: Nauka, 1986 (Russian); English translation: Kluwer Acad. Publ., 1988.MATHGoogle Scholar
  32. [32]
    N. N. Bogolyubov, V. S. Vladimirov. A theorem on analytic continuation of generalized functions. Nauchnye Dokl. Vysshei Shkoly. Fiz.-Mat. Nauki, 1958, No. 3, 26–35 (Russian).Google Scholar
  33. [33]
    N. N. Bogolyubov, V. S. Vladimirov. Representation of n-point functions. Proc. Steklov Inst. Math., 1971, 112, 1–18.Google Scholar
  34. [34]
    A. G. Sergeev, Xiang-Yu Zhou. Extended future tube conjecture. Proc. Steklov Inst. Math., 2000, 228, 25–42.MATHMathSciNetGoogle Scholar
  35. [35]
    A. D. Sakharov. Reminiscences, two vols. Moscow: Human Rights, 1996 (Russian).Google Scholar
  36. [36]
    In the Intermissions … Collected Works on Research into the Essentials of Theoretical Physics in the Russian Federal Nuclear Center, Arsamas-16 (ed. Yu. A. Trutnev). Singapore: World Scientific, 1998.Google Scholar
  37. [37]
    V. I. Lebedev, V. S. Vladimirov. The nuclear power and mathematics. Russ. J. Numer. Anal. Math. Modelling, 2000, 15(3–4), 257–283.MATHMathSciNetGoogle Scholar
  38. [38]
    V. S. Vladimirov. Numerical solution of kinetic equation for spherical symmetry. Vychisl. Mat., 1958, 3, 3–33 (Russian).MATHGoogle Scholar
  39. [39]
    G. A. Goncharov. The 50th anniversary of the beginning of research in the USSR on the potential creation of a nuclear fusion reactor. Physics-Uspekhi, 2001, 44(8), 851–858.CrossRefGoogle Scholar
  40. [40]
    I. V. Potugina, I. D. Sofronov. The development of basic mathematical methods and software at the All-Russian Research Institute of Experimental Physics. Atom, 2002, 2–11 (Russian).Google Scholar
  41. [41]
    V. S. Vladimirov. On the application of the Monte Carlo method to find the smallest eigenvalue and the corresponding eigenfunction of a linear integral equation. Teor. Veroyatn. Primen., 1956, 1(1), 113–130 (Russian).MATHGoogle Scholar
  42. [42]
    V. S. Vladimirov. On the approximate calculation of Wiener integrals. Uspekhi Mat. Nauk, 1960, 15(4), 129–135 (Russian); AMS Transl. (2), 1963, 34, 405–412.MATHGoogle Scholar
  43. [43]
    V. S. Vladimirov, I. V. Volovich. The Wiener-Hopf equation, the Riemann-Hilbert problem, and orthogonal polynomials. Sov. Math. Dokl., 1982, 26, 415–419.MATHGoogle Scholar
  44. [44]
    V. S. Vladimirov. Mathematical problems of the one-speed theory of particle transport. Trudy Matem. Inst. im. Steklova, 1961, 61, 158 pp. (Russian); English translation: Chalk River: Atomic Energy of Canada, 1963.Google Scholar
  45. [45]
    V. S. Vladimirov. Approximate solution of a boundary-value problem for differential equation of the second order. Prikl. Mat. Mekh., 1955, 19(3), 315–324 (Russian).MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • V. S. Vladimirov

There are no affiliations available

Personalised recommendations