The P \(\mathop = \limits^? \) NP-Problem: A View from the 1990s

  • A. A. Razborov


Boolean Function Turing Machine Complexity Theory Combinatorial Problem Computable Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Aro94]
    S. Arora. Probabilistic checking of proofs and hardness of approximation problems. Electron. Colloq. Comp. Complexity, 1994, 1. Available via Scholar
  2. [Aro95]
    S. Arora. Reductions, codes, PCPs and inapproximability. In: 36th Annual IEEE Symposium on Foundations of Computer Science (Milwaukee, WI, 1995). Los Alamitos, CA: IEEE Comp. Soc. Press, 1995, 404–413.Google Scholar
  3. [BF98]
    R. Beigel, Bin Fu. Solving intractable problems with DNA computing. In: Thirteenth Annual IEEE Conference on Computational Complexity (Buffalo, NY, 1998). Los Alamitos, CA: IEEE Comp. Soc. Press, 1998, 154–168.CrossRefGoogle Scholar
  4. [Blu67]
    M. Blum. A machine-independent theory of the complexity of recursive functions. J. Assoc. Comp. Machin., 1967, 14, 322–336.zbMATHMathSciNetGoogle Scholar
  5. [Cob64]
    A. Cobham. The intrinsic computational difficulty of functions. In: Proceedings of the 1964 International Congress for Logic, Methodology, and the Philosophy of Science. Amsterdam: North-Holland, 1964, 24–30.Google Scholar
  6. [Coo71a]
    S. A. Cook. Characterizations of pushdown machines in terms of time-bounded computers. J. Assoc. Comp. Machin., 1971, 18(1), 4–18.zbMATHGoogle Scholar
  7. [Coo71b]
    S. A. Cook. The complexity of theorem proving procedures. In: Proceedings of the 3rd Annual ACM Symposium on the Theory of Computing. 1971, 151–158.Google Scholar
  8. [Coo90]
    S. A. Cook. Computational complexity of higher type functions. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Kyoto, 1990). Tokyo: Math. Soc. Japan, 1991, 55–69.Google Scholar
  9. [Dan60]
    G. B. Dantzig. On the significance of solving linear programming problems with some integer variables. Econometrics, 1960, 28(1), 31–44.MathSciNetGoogle Scholar
  10. [Edm62]
    J. Edmonds. Covers and packings in a family of sets. Bull. Amer. Math. Soc., 1962, 68, 494–499.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [Edm65a]
    J. Edmonds. Minimum partition of a matroid into independent sets. J. Res. Nat. Bureau Stand. (B), 1965, 69, 67–72.zbMATHMathSciNetGoogle Scholar
  12. [Edm65b]
    J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 1965, 17, 449–467.zbMATHMathSciNetGoogle Scholar
  13. [Gim65]
    J. F. Gimpel. A method of producing a Boolean function having an arbitrarily prescribed implicant table. IEEE Trans. Comp., 1965, 14, 485–488.zbMATHGoogle Scholar
  14. [GJ79]
    M. R. Garey, D. S. Johnson. Computers and Intractability. A Guide to the Theory of NP -Completeness. San Francisco, CA: W.H. Freeman, 1979.Google Scholar
  15. [Hen65]
    F. C. Hennie. One-tape, off-line Turing machine computations. Information and Control, 1965, 8(6), 553–578.MathSciNetCrossRefGoogle Scholar
  16. [HS65]
    J. Hartmanis, R. E. Stearns. On the computational complexity of algorithms. Trans. Amer. Math. Soc., 1965, 117, 285–306.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [HS66]
    F. C. Hennie, R. E. Stearns. Two-tape simulation of multitape Turing machines. J. Assoc. Comp. Machin., 1966, 13(4), 533–546.zbMATHMathSciNetGoogle Scholar
  18. [Kar72]
    R. M. Karp. Reducibility among combinatorial problems. In: Complexity of Computer Computations (Yorktown Heights, NY, 1972). New York: Plenum Press, 1972, 85–103.Google Scholar
  19. [Lev73]
    L. A. Levin. Universal brute-force search problems. Problemy Peredachi Informatsii, 1973, 9(3), 115–116 (Russian).zbMATHMathSciNetGoogle Scholar
  20. [Nel55]
    R. J. Nelson. Review of [Qui52]. J. Symbolic Logic, 1955, 20, 105–108.zbMATHCrossRefGoogle Scholar
  21. [Qui52]
    W. V. Quine. The problem of simplifying truth functions. Amer. Math. Monthly, 1952, 59, 521–531.zbMATHMathSciNetCrossRefGoogle Scholar
  22. [Rab66]
    M. Rabin. Mathematical theory of automata. In: Proceedings of the 19th ACM Symposium in Applied Mathematics. Providence, RI: Amer. Math. Soc., 1967, 153–175.Google Scholar
  23. [Rab77]
    M. Rabin. Decidable theories. In: Handbook of Mathematical Logic (ed. J. Barwise). Amsterdam: North-Holland, 1977, Chapter C.3.Google Scholar
  24. [Rit63]
    R. W. Ritchie. Classes of predictably computable functions. Trans. Amer. Math. Soc., 1963, 106, 139–173.zbMATHMathSciNetCrossRefGoogle Scholar
  25. [Sho97]
    P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Computing, 1997, 26(5), 1484–1509.zbMATHMathSciNetCrossRefGoogle Scholar
  26. [Sip92]
    M. Sipser. The history of the P versus NP problem. In: Proceedings of the 24th ACM Symposium on the Theory of Computing. 1992, 603–618.Google Scholar
  27. [Sli99]
    A. Slissenko. Leningrad/St. Petersburg (1961–1998): From logic to complexity and further. In: People and Ideas in Theoretical Computer Science (ed. C. S. Calude). Singapore: Springer, 1999, 274–313.Google Scholar
  28. [Sma98]
    S. Smale. Mathematical problems for the next century. Math. Intelligencer, 1998, 20(2), 7–15.zbMATHMathSciNetCrossRefGoogle Scholar
  29. [Tra64]
    B. A. Trakhtenbrot. Turing computations with logarithmic retardation. Algebra i Logika, 1964, 3(4) 33–48 (Russian).zbMATHMathSciNetGoogle Scholar
  30. [Tra84]
    B. A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force search) algorithms. Ann. Hist. Computing, 1984, 6(4), 384–400.zbMATHMathSciNetGoogle Scholar
  31. [Yabl59a]
    S. V. Yablonskii. On the impossibility of eliminating the brute-force search of all functions in P 2 when solving certain problems of circuit theory. Dokl. Akad. Nauk SSSR, 1959, 124(1), 44–47 (Russian).zbMATHMathSciNetGoogle Scholar
  32. [Yabl59b]
    S. V. Yablonskii. On the algorithmic difficulty of the design of minimal contact circuits. In: Problems of Cybernetics (ed. A. A. Lyapunov), No. 2. Moscow: Fizmatgiz, 1959, 75–121 (Russian).Google Scholar
  33. [Yano59]
    S. A. Yanovskaya. Mathematical logic and the foundations of mathematics. In: Mathematics in the USSR after 40 Years. 1917–1957, Vol. 1. Moscow: Fizmatgiz, 1959, 13–120 (pp. 44–45: papers by G. S. Tseitin) (Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. A. Razborov

There are no affiliations available

Personalised recommendations