Autonomous Self-assembly in a Swarm-bot

  • Roderich Groß
  • Michael Bonani
  • Francesco Mondada
  • Marco Dorigo

Summary

Multi-robot systems have been studied in tasks that require the robots to be physically linked. In such a configuration, a group of robots may navigate a terrain that proves too difficult for a single robot. On the contrary, many collective tasks can be accomplished more efficiently by a group of independent robots. This paper is about swarm-bot, a robotic system that can operate in both configurations and autonomously switch from one to the other.

We examine the performance of a single robot and of groups of robots self-assembling with an object or another robot. We assess the robustness of the system with respect to different types of rough terrain. Finally, we evaluate the performance of swarms of 16 physical robots.

At present, for self-assembly in autonomous, mobile robotics, swarm-bots is the state of the art for what concerns reliability, robustness and speed.

Key words

self-assembly collective robotics self-reconfigurable robotics swarm robotics swarm intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Bererton and P. K. Khosla. Towards a team of robots with repair capabilities: a visual docking system. In Proc. of the 7thInt. Symp. on Experimental Robotics, volume 271 of LNCIS, pages 333–342. Springer, Berlin, Germany, 2000.Google Scholar
  2. 2.
    H. B. Brown, M.V. Weghe, C.A. Bererton, and P. K. Khosla. Millibot trains for enhanced mobility. IEEE/ASME Trans. Mechatron., 7(4):452–461, 2002.CrossRefGoogle Scholar
  3. 3.
    A. Castano, W.-M. Shen, and P. M. Will. CONRO: Towards deployable robots with inter-robots metamorphic capabilities. Auton. Robots, 8(3):309–324, 2000.CrossRefGoogle Scholar
  4. 4.
    R. Damoto, A. Kawakami, and S. Hirose. Study of super-mechano colony: concept and basic experimental set-up. Adv. Robots, 15(4):391–408, 2001.CrossRefGoogle Scholar
  5. 5.
    T. Fukuda and S. Nakagawa. A dynamically reconfigurable robotic system (concept of a system and optimal configurations). In Proc. of the 1987 IEEE Int. Conf. on Industrial Electronics, Control and Instrumentation, pages 588–595. IEEE Computer Society Press, Los Alamitos, CA, 1987.Google Scholar
  6. 6.
    T. Fukuda and S. Nakagawa. Method of autonomous approach, docking and detaching between cells for dynamically reconfigurable robotic system CEBOT. JSME Int. J. III-VIB. C., 33(2):263–268, 1990.Google Scholar
  7. 7.
    T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss. Self organizing robots based on cell structures-CEBOT. In Proc. of the 1988 IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, pages 145–150. IEEE Computer Society Press, Los Alamitos, CA, 1988.Google Scholar
  8. 8.
    T. Fukuda and T. Ueyama. Cellular Robotics and Micro Robotic Systems. World Scientific Publishing, London, UK, 1994.Google Scholar
  9. 9.
    T. Fukuda, G. Xue, F. Arai, H. Asama, H. Omori, I. Endo, and H. Kaetsu. A study on dynamically reconfigurable robotic systems — assembling, disassembling and reconfiguration of cellular manipulator by cooperation of two robot manipulators. In Proc. of the 1991 IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, volume 3, pages 1184–1189. IEEE Computer Society Press, Los Alamitos, CA, 1991.Google Scholar
  10. 10.
    R. Groß, M. Bonani, F. Mondada, and M. Dorigo. Autonomous self-assembly in mobile robotics. Technical Report IRIDIA/2005-2, IRIDIA-Université Libre de Bruxelles, 2005.Google Scholar
  11. 11.
    R. Groß and M. Dorigo. Group transport of an object to a target that only some group members may sense. In Proc. of the 8thInt. Conf. on Parallel Problem Solving from Nature, volume 3242 of LNCS, pages 852–861. Springer Verlag, Berlin, Germany, 2004.Google Scholar
  12. 12.
    S. Hirose. Super mechano-system: New perspective for versatile robotic system. In Proc. of the 7thInt. Symp. on Experimental Robotics, volume 271 of LNCIS, pages 249–258. Springer, Berlin, Germany, 2001.Google Scholar
  13. 13.
    S. Hirose, T. Shirasu, and E. F. Fukushima. Proposal for cooperative robot “Gunryu” composed of autonomous segments. Robot. Anton. Syst., 17:107–118, 1996.CrossRefGoogle Scholar
  14. 14.
    M. W. Jørgensen, E. H. Østergaard, and H. H. Lund. Modular ATRON: Modules for a self-reconfigurable robot. In Proc. of the 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 2068–2073. IEEE Computer Society Press, Los Alamitos, CA, 2004.Google Scholar
  15. 15.
    F. Mondada, M. Bonani, S. Magnenat, A. Guignard, and D. Floreano. Physical connections and cooperation in swarm robotics. In Proc. of the 8thConf. on Intelligent Autonomous Systems, pages 53–60. IOS Press, Amsterdam, The Netherlands, 2004.Google Scholar
  16. 16.
    F. Mondada, L. M. Gambardella, D. Floreano, S. Noln, J.-L. Deneubourg, and M. Dorigo. The cooperation of swarm-bots: Physical interactions in collective robotics. IEEE Robot. Autom. Mag., 12(2):21–28, June 2005.CrossRefGoogle Scholar
  17. 17.
    F. Mondada, G. C. Pettinaro, A. Guignard, I. W. Kwee, D. Floreano, J.-L. Deneubourg, S. Nolfi, L. M. Gambardella, and M. Dorigo. Swarm-Bot: A new distributed robotic concept. Auton. Robots, 17(2–3):193–221, 2004.CrossRefGoogle Scholar
  18. 18.
    K. Motomura, A. Kawakami, and S. Hirose. Development of arm equipped single wheel rover: Effective arm-posture-based steering method. Auton. Robots, 18(2):215–229, 2005.CrossRefGoogle Scholar
  19. 19.
    S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji. M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron., 7(4):431–441, 2002.CrossRefGoogle Scholar
  20. 20.
    M. Rubenstein, K. Payne, P. Will, and W.-M. Shen. Docking among independent and autonomous CONRO self-reconfigurable robots. In Proc. of the 2004 IEEE Int. Conf. on Robotics and Automation, volume 3, pages 2877–2882. IEEE Computer Society Press, Los Alamitos, CA, 2004.Google Scholar
  21. 21.
    K. Støy, W.-M. Shen, and P. Will. On the use of sensors in self-reconfigurable robots. In Proc. of the 7thInt. Conf. on Simulation of Adaptive Behavior, pages 48–57. MIT Press, Cambridge, MA, 2002.Google Scholar
  22. 22.
    K. Tomita, S. Murata, H. Kurokawa, E. Yoshida, and S. Kokaji. Self-assembly and self-repair method for a distributed mechanical system. IEEE Trans. Robot. Automat., 15(6):1035–1045, 1999.CrossRefGoogle Scholar
  23. 23.
    M. Yim, D. G. Duff, and K. D. Roufas. PolyBot: a modular reconfigurable robot. In Proc. of the 2000 IEEE Int. Conf. on Robotics and Automation, volume 1, pages 514–520. IEEE Computer Society Press, Los Alamitos, CA, 2000.Google Scholar
  24. 24.
    M. Yim, K. Roufas, D. Duff, Y. Zhang, C. Eldershaw, and S. B. Homans. Modular reconfigurable robots in space applications. Auton. Robots, 14(2–3):225–237, 2003.CrossRefGoogle Scholar
  25. 25.
    M. Yim, Y. Zhang, K. Roufas, D. Duff, and C. Eldershaw. Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron., 7(4):442–451, 2002.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roderich Groß
    • 1
  • Michael Bonani
    • 2
  • Francesco Mondada
    • 2
  • Marco Dorigo
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBelgium
  2. 2.ASLÉcole Polytechnique Fédérate de LausanneSwitzerland

Personalised recommendations