Fringe 2005 pp 46-53

Experimental Study of Coherence Vortices: Birth and Evolution of Phase Singularities in the Spatial Coherence Function

  • Wei Wang
  • Zhihui Duan
  • Steen G. Hanson
  • Yoko Miyamoto
  • Mitsuo Takeda
Conference paper

Conclusions

In summary, we have presented evidence of coherence vortices for the first time and experimentally investigated the properties of phase singularities in the coherence function. Unlike for conventional optical vortices, the intensity for coherence vortices does not vanish, but their contrasts become zero. Furthermore, the proposed method for synthesizing coherence vortices faciliates direct observation of the detailed local properties of an coherence vortex, and introduces new opportunities to explore other topological phenomena for the coherence function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nye, J F and Berry M V (1974) Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190.MathSciNetMATHGoogle Scholar
  2. 2.
    Schouten H F, Gbur, G, Visser, T D and Wolf E (2003) Phase singularities of the coherence functions in Young’s interference pattern. Opt. Lett. 28(12):968–970.Google Scholar
  3. 3.
    Gbur, G and Visser T D (2003) Coherence vortices in partially coherent beams. Opt. Comm. 222:117–125.CrossRefGoogle Scholar
  4. 4.
    Goodman, J W (1968) Introduction to Fourier optics. McGRAW-Hill, New York.Google Scholar
  5. 5.
    Rosen, J and Yariv, A (1996) General theorem of spatial coherence: application to three-dimensional imaging. J. Opt. Soc. Am A 13:2091–2095.CrossRefGoogle Scholar
  6. 6.
    Rosen, J and Takeda, M (2000) Longitudinal spatial coherence applied for surface profilometry. Appl. Opt. 39(23):4107–4111.CrossRefGoogle Scholar
  7. 7.
    Wang, W, Kozaki, H, Rosen J and Takeda, M (2002) Synthesis of longitudinal coherence functions by spatial modulation of an extended light source: a new interpretation and experimental verifications. Appl. Opt. 41(10):1962–1971.Google Scholar
  8. 8.
    Takeda, M, Wang, W, Duan, Z and Miyamoto, Y (2005) Coherence holography: Holographic Imaging with Coherence Function. Holography 2005, International Conference on Holography, Varna, Bulgaria.Google Scholar
  9. 9.
    Larkin, K G, Bone, D J and Oldfield, M A (2001) Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. J. Opt. Soc. Am. A 18(8):1862–1870.Google Scholar
  10. 10.
    Takeda, M, Ina H and Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am 72:156–160.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wei Wang
    • 1
  • Zhihui Duan
    • 1
  • Steen G. Hanson
    • 2
  • Yoko Miyamoto
    • 1
  • Mitsuo Takeda
    • 1
  1. 1.Dept. of Info. & Comm. Engg.The University of Electro-CommunicationsChofu, TokyoJapan
  2. 2.Dept. for Optics and Plasma Research, OPL-128Risoe National LaboratoryRoskildeDenmark

Personalised recommendations