Advertisement

Antimalarial Multi-Drug Resistance in Asia: Mechanisms and Assessment

  • A.-C. Uhlemann
  • S. Krishna
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 295)

Abstract

The emergence and spread of drug-resistant parasites poses a major problem for management of Plasmodium falciparum malaria in endemic areas. Nowhere is this more apparent than in southeast Asia, where multi-drug resistance to chloroquine and sulfadoxine-pyrimethamine was exacerbated when mefloquine monotherapy began failing in the 1980s. A better understanding of mechanisms of (multi-) drug resistance is urgently warranted to monitor and guide antimalarial chemotherapy regimens more efficiently. Here we review recent advances on identification of molecular markers that can be employed in predicting in vitro and in vivo resistance in southeast Asia. Examples include amplification of PfMDR1 (P. falciparum multi-drug resistant gene 1) and mefloquine, K76T PfCRT and chloroquine, as well as mutations in the dihydroperoate synthase and dihydrofolate reductase genes and the antifolate class of drugs.

Keywords

Plasmodium Falciparum Plasmodium Falciparum Malaria Chloroquine Resistance Plasmodium Chabaudi PfMDR1 Copy Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adagu IS, Dias F, Pinheiro L, Rombo L, do Rosario V, Warhurst DC (1996) Guinea Bissau: association of chloroquine resistance of Plasmodium falciparum with the Tyr86 allele of the multiple drug-resistance gene PfMDR1. Trans R Soc TropMed Hyg 90:90–91Google Scholar
  2. Adagu IS, Warhurst DC (1999a) Allele-specific, nested, one tube PCR: application to PfMDR1 polymorphisms in Plasmodium falciparum. Parasitology 119:1–6PubMedGoogle Scholar
  3. Adagu IS, Warhurst DC (1999b) Association of cg2 and PfMDR1 genotype with chloroquine resistance in field samples of Plasmodium falciparum from Nigeria. Parasitology 119:343–348PubMedGoogle Scholar
  4. Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N et al. (2004) Artesunate combinations for treatment of malaria: meta-analysis. Lancet 363: 9–17PubMedGoogle Scholar
  5. Anderson TJ (2004) Mapping drug resistance genes in Plasmodium falciparum by genome-wide association. Curr Drug Targets Infect Disord 4:65–78PubMedCrossRefGoogle Scholar
  6. Anderson TJ, Nair S, Williams JT, Brockman A, Paiphun L, Newton PN, Mayxay M, Guthmann J-P, Simithuis FM, Hien TT, Van den Broek I, Nosten F (2003) Population structure revealed by selected and putatively neutral SNPs in S.E. Asian malaria parasites. American Society of Tropical Medicine and Hygiene, AtlantaGoogle Scholar
  7. Attaran A, Barnes KI, Curtis C, d’Alessandro U, Fanello CI, Galinski MR, Kokwaro G, Looareesuwan S, Makanga M, Mutabingwa TK, Talisuna A, Trape JF, Watkins WM (2004) WHO, the Global Fund, and medical malpractice in malaria treatment. Lancet 363:237–240PubMedCrossRefGoogle Scholar
  8. Babiker HA, Pringle SJ, Abdel-Muhsin A, Mackinnon M, Hunt P, Walliker D (2001) High-level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene PfCRT and the multidrug resistance Gene PfMDR1. J Infect Dis 183:1535–1538PubMedCrossRefGoogle Scholar
  9. Berens N, Schwoebel B, Jordan S, Vanisaveth V, Phetsouvanh R, Christophel EM, Phompida S, Jelinek T (2003) Plasmodium falciparum: correlation of in vivo resistance to chloroquine and antifolates with genetic polymorphisms in isolates from the south of Lao PDR. Trop Med Int Health 8:775–782PubMedCrossRefGoogle Scholar
  10. Borrmann S, Binder RK, Adegnika AA, Missinou MA, Issifou S, Ramharter M, Wernsdorfer WH, Kremsner PG (2002) Reassessment of the resistance of Plasmodium falciparum to chloroquine in Gabon: implications for the validity of tests in vitro vs. in vivo. Trans R Soc Trop Med Hyg 96:660–663PubMedCrossRefGoogle Scholar
  11. Chongsuphajaisiddhi T, Sabchareon A (1981) Sulfadoxine-pyrimethamine resistant falciparum malaria in Thai children. Southeast Asian J Trop Med Public Health 12:418–421PubMedGoogle Scholar
  12. Cowman AF, Galatis D, Thompson JK (1994) Selection for mefloquine resistance in Plasmodium falciaprum is linked to amplification of the PfMDR1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci USA 91:1143–1147PubMedGoogle Scholar
  13. Cowman AF, Karcz S, Galatis D, Culvenor JG (1991) A P-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole. J Cell Biol 113:1033–1042PubMedCrossRefGoogle Scholar
  14. Cowman AF, Lew AM (1989) Antifolate drug selection results in duplication and rearrangement of chromosome 7 in Plasmodium chabaudi. Mol Cell Biol 9:5182–5188PubMedGoogle Scholar
  15. Cowman AF, Lew AM (1990) Chromosomal rearrangements and point mutations in the DHFR-TS gene of Plasmodium chabaudi under antifolate selection.Mol Biochem Parasitol 42:21–29PubMedCrossRefGoogle Scholar
  16. Desjardins RE, Canfield CJ et al. (1979) Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 16:710–718PubMedGoogle Scholar
  17. Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV Coulibaly D (2001) A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344:257–263PubMedCrossRefGoogle Scholar
  18. Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, O’Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961PubMedCrossRefGoogle Scholar
  19. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE (2000) Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6:861–871PubMedCrossRefGoogle Scholar
  20. Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, Cowman AF (1990) Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345: 255–258PubMedCrossRefGoogle Scholar
  21. Foote SJ, Thompson JK, Cowman AF, Kemp DJ (1989) Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell 57:921–930PubMedCrossRefGoogle Scholar
  22. Grobusch MP, Adagu IS, Kremsner PG, Warhurst DC (1998) Plasmodium falciparum: in vitro chloroquine susceptibility and allele-specific PCR detection of PfMDR1 Asn86Tyr polymorphism in Lambarene, Gabon. Parasitology 116:211–217PubMedCrossRefGoogle Scholar
  23. Hunt P, Cravo PV, Donleavy P, Carlton JM, Walliker D (2004) Chloroquine resistance in Plasmodium chabaudi: are chloroquine-resistance transporter (crt) and multidrug resistance (mdr1) orthologues involved? Mol Biochem Parasitol 133:27–35PubMedCrossRefGoogle Scholar
  24. Joy DA, Feng X, Mu J, Furuya T, Chotivanich K, Krettli AU, Ho M, Wang A, White NJ, Suh E, Beerli P, Su XZ (2003) Early origin and recent expansion of Plasmodium falciparum. Science 300:318–321PubMedCrossRefGoogle Scholar
  25. Kamchonwongpaisan S, Chandra-ngam G, et al. (1994) Resistance to artemisinin of malaria parasites (Plasmodium falciparum) infecting α-thalassemic erythrocytes in vitro. J Clin Invest 93:467–473PubMedCrossRefGoogle Scholar
  26. Kremsner PG, Krishna S (2004) Combination chemotherapy. Lancet 364:438–447CrossRefGoogle Scholar
  27. Krishna S, Planche T, Agbenyega T, Woodrow C, Agranoff D, Bedu-Addo G, Owusu-Ofori AK, Appiah JA, Ramanathan S, Mansor SM, Navaratnam V (2001) Bioavailability and preliminary clinical efficacy of intrarectal artesunate in Ghanaian children with moderate malaria. Antimicrob Agents Chemother 45:509–516PubMedGoogle Scholar
  28. Krishna S, White NJ (1996) Pharmacokinetics of quinine, chloroquine and amodiaquine. Clinical implications. Clin Pharmacokinetics 30:263–299Google Scholar
  29. Luxemberger C, Perea WA, Delmas G, Pruja C, Pecoul B, Moren A (1994) Permethrin-impregnated bed nets for the prevention of malaria in schoolchildren on the Thai-Burmese border. Trans R Soc Trop Med Hygiene 88:155–159Google Scholar
  30. Marzolini C, Paus E, Buchlin T, Kim RB (2004) Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 75:13–33PubMedCrossRefGoogle Scholar
  31. Mawili-Mboumba DP, Kun JF et al. (2002) PfMDR1 alleles and response to ultralow-dose mefloquine treatment in Gabonese patients. Antimicrob Agents Chemother 46:166–170PubMedCrossRefGoogle Scholar
  32. Moreno A, Brasseur P et al. (2001) Evaluation under field conditions of the colourimetric DELI-microtest for the assessment of Plasmodium falciparum drug resistance. Trans R Soc Trop Med Hyg 95:100–103PubMedCrossRefGoogle Scholar
  33. Nair S, Williams JT, Brockman A, Paiphun L, Mayxay M, Newton PN, Guthmann JP, Smithuis FM, Hien TT, White NJ, Nosten F, Anderson TJ (2003) A selective sweep driven by pyrimethamine treatment in southeast asian malaria parasites. Mol Biol Evol 20:1526–1536PubMedGoogle Scholar
  34. Ngo T, Duraisingh M, Reed M, Hipgrave D, Biggs B, Cowman AF (2003) Analysis of PfCRT, PfMDR1, dhfr, and dhps mutations and drug sensitivities in Plasmodium falciparum isolates from patients in Vietnam before and after treatment with artemisinin. Am J Trop Med Hyg 68:350–356PubMedGoogle Scholar
  35. Noedl H, Wernsdorfer WH et al. (2002) Histidine-rich protein II: a novel approach to malaria drug sensitivity testing. Antimicrob Agents Chemother 46:1658–1664PubMedCrossRefGoogle Scholar
  36. Nomura T, Carlton JM, Baird JK, del Portillo HA, Fryauff DJ, Rathore D, Fidock DA, Su X, Collins WE, McCutchan TF, Wootton JC, Wellems TE (2001) Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J Infect Dis 183:1653–1661PubMedCrossRefGoogle Scholar
  37. Nosten F, ter Kuile F, Chongsuphajaisiddhi T, Luxemburger C, Webster HK, Edstein M, Phaipun L, Thew KL, White NJ (1991a) Mefloquine-resistant falciparum malaria on the Thai—Burmese border. Lancet 337:1140–1143PubMedCrossRefGoogle Scholar
  38. Nosten F, ter Kuile F, Chongsuphajaisiddhi T, Na Banchang K, Karbwang J, White NJ (1991b) Mefloquine pharmacokinetics and resistance in children with acute falciparum malaria. Br J Clin Pharmacol 31:556–559PubMedGoogle Scholar
  39. Nosten F, van Vugt M, Price R, Luxemburger C, Thway KL, Brockman A, McGready R, ter Kuile F, Looareesuwan S, White NJ (2000). Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet 356:297–302PubMedGoogle Scholar
  40. Pickard AL, Wongsrichanalai C, Purfield A, Kamwendo D, Emery K, Zalewski C, Kawamoto F, Miller RS, Meshnick SR (2003). Resistance to antimalarials in Southeast Asia and genetic polymorphisms in PfMDR1. Antimicrob Agents Chemother 47:2418–2423PubMedCrossRefGoogle Scholar
  41. Pillai DR, Labbe AC et al. (2001). Plasmodium falciparum malaria in Laos: chloroquine treatment outcome and predictive value of molecular markers. J Infect Dis 183:789–795PubMedCrossRefGoogle Scholar
  42. Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems T (1995) Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hygiene 52:656–568Google Scholar
  43. Price R, Robinson G, Brockman A, Cowman A, Krishna S (1997) Assessment of PfMDR1 gene copy number by tandem competitive polymerase chain reaction. Mol Biochem Parasitol 85:161–169PubMedCrossRefGoogle Scholar
  44. Price R, Uhlemann A-C, Brockman A, McGready R, Ashley E, Phaipun L, Patel R, Laing K, Looareesuwan S, White N, Nosten F, Krishna S (2004) Mefloquine resistance in Plasmodium falciparum results from increased PfMDR1 gene copy number. Lancet 364:438–447PubMedCrossRefGoogle Scholar
  45. Price RN, Cassar C, et al. (1999) The PfMDR1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand. Antimicrob Agents Chemother 43:2943–2949PubMedGoogle Scholar
  46. Price RN, Cassar C, Brockman A, Duraisingh M, van Vugt M, White NJ, Nosten F, Krishna S (1997a) Artesunate/mefloquine treatment of multi-drug resistant falciparum malaria. Trans R Soc Trop Med Hyg 91:574–577PubMedCrossRefGoogle Scholar
  47. Price RN, Nosten F, Luxemburger C, van Vugt M, Phaipun L, Chongsuphajaisiddhi T, White NJ (1997b) Artesunate/mefloquine treatment of multi-drug resistant falciparum malaria. Trans R Soc Trop Med Hyg 91:574–577PubMedCrossRefGoogle Scholar
  48. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF (2000) PgH1 modulates sensitivity and reisstance ot multiple antimalarials in Plasmodium falciparum. Nature 403:906–909PubMedGoogle Scholar
  49. Schwenke A, Brandts C, Philipps J, Winkler S, Wernsdorfer WH, Kremsner PG (2001) Declining chloroquine resistance of Plasmodium falciparum in Lambarene, Gabon from 1992 to 1998.Wien KlinWochenschr 113:63–64Google Scholar
  50. Sidhu AB, Verdier-Pinard D, Fidock DA (2002) Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by PfCRT mutations. Science 298:210–213PubMedCrossRefGoogle Scholar
  51. Silamut K, White NJ et al. (1985) Binding of quinine to plasma proteins in falciparum malaria. Am J Trop Med Hyg 34:681–686PubMedGoogle Scholar
  52. Srivastava IK, Morrisey JM, Darrouzet E, Daldal F, Vaidya AB (1999) Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol Microbiol 33:704–711PubMedCrossRefGoogle Scholar
  53. Tinto H, Ouedraogo JB, Erhart A, Van Overmeir C, Dujardin JC, Van Marck E, Guiguemde TR, D’Alessandro U (2003) Relationship between the PfCRT T76 and the PfMDR1 Y86 mutations in Plasmodium falciparum and in vitro/in vivo chloroquine resistance in Burkina Faso, West Africa. Infect Genet Evol 3:287–292PubMedCrossRefGoogle Scholar
  54. Tran TH, Dolecek C, Pham PM, Nguyen TD, Nguyen TT, Le HT, Dong TH, Tran TT, Stepniewska K, White NJ, Farrar J (2004) Dihydroartemisinin-piperaquine against multidrug-resistant Plasmodium falciparum malaria in Vietnam: randomised clinical trial. Lancet 363:18–22PubMedGoogle Scholar
  55. Trape JF, Pison G, Preziosi MP, Enel C, Desgrees du Lou A, Delaunay V, Samb B, Lagarde E, Molez JF, Simondon F (1998) Impact of chloroquine resistance on malaria mortality. C R Acad Sci III 321:689–697PubMedGoogle Scholar
  56. Wang P, Sims PF et al. (1997) A modified in vitro sulfadoxine susceptibility assay for Plasmodium falciparum suitable for investigating Fansidar resistance. Parasitology 115:223–230PubMedCrossRefGoogle Scholar
  57. Wellems TE (1991) Molecular genetics of drug resistance in Plasmodium falciparum malaria. Parasitol Today 7:110–112PubMedCrossRefGoogle Scholar
  58. Wellems TE, Plowe CV (2001) Chloroquine-resistant malaria. J Infect Dis 184:770–776PubMedCrossRefGoogle Scholar
  59. Wellems TE, Walker-Jonah A, Panton LJ (1991) Genetic mapping of the chloroquine resistance locus on Plasmodium falciparum chromosome 7. Proc Natl Acad Sci USA 88:3382–3386PubMedGoogle Scholar
  60. White NJ (1992) Antimalarial drug resistance: the pace quickens. J Antimicrobial Chemother 30:571–585Google Scholar
  61. Wichmann O, Betschart B et al. (2003) Prophylaxis failure due to probable mefloquine resistant P falciparum from Tanzania. Acta Trop 86:63–65PubMedGoogle Scholar
  62. Wilson CM, Serrano AE et al. (1989) Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science 244:1184–1186PubMedGoogle Scholar
  63. Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, Magill AJ, Su XZ (2002) Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418:320–323PubMedCrossRefGoogle Scholar
  64. Yuvaniyama J, Chitnumsub P, Kamchongwongpaisan S, Vanichtanankul J, Sirawaraporn W, Taylor P, Walkinshaw MD, Yuthavong Y (2003) Insights into antifolate resistance from malarial DHFR-TS structures. Nat Struct Biol 10: 357–365PubMedCrossRefGoogle Scholar
  65. Zucker JR, Ruebush TK 2nd, Obonyo C, Otieno J, Campbell CC (2003) The mortality consequences of the continued use of chloroquine in Africa: experience in Siaya, western Kenya. Am J Trop Med Hyg 68:386–390PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A.-C. Uhlemann
    • 1
  • S. Krishna
    • 1
  1. 1.Devision of Cellular and Molecular Medicine, Centre for InfectionSt. George’s University of LondonLondonUK

Personalised recommendations