Considerations of the Biot Velocity Relations: Viscous Finite-difference Calculations in Combination with Flow Simulations

  • Erik H. Saenger
  • Youngseuk Keehm
  • Serge A. Shapiro
Conference paper


This paper is concerned with numerical considerations of viscous fluid effects on wave propagation in porous media. We apply a displacement-stress rotated staggered finite-difference (FD) grid technique to solve the elastodynamic wave equation. An accurate approximation of a Newtonian fluid is implemented in this technique by using a generalized Maxwell body. With this approach we consider the velocity predictions of the Biot theory for elastic waves in different digital rock samples. To distinguish between the low and the high frequency range we estimate the effective permeabilities by a flow simulation. Our numerical results indicate that the viscous Biot-coupling is visible in the numerical experiments. Moreover, the influences of other solid-fluid interactions (e.g. Squirt flow) are also discussed.


Porous Medium Rock Model High Frequency Limit Biot Theory Numerical Consideration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auld, B. A., Acoustic Fields and Waves in Solids, Vol. 1, John Wiley and Sons, New York, 1973.Google Scholar
  2. 2.
    Berryman, J. G., Poroelastic shear modulus dependence on pore-fluid properties arising in a model of thin isotropic layers, Geophys. J. Int., 157, 415–425, 2004.CrossRefGoogle Scholar
  3. 3.
    Biot, M. A., Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range and II. Higher-frequency range, J. Acoust. Soc. Amer., 28, 168–191, 1956.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Emmerich, H., and M. Korn, Incorporation of attenuation into time-domain computations of seismic wave fields, Geophysics, 52, 1252–1264, 1987.CrossRefGoogle Scholar
  5. 5.
    Keehm, Y., Computational rock physics: Transport properties in porous media and applications, Ph.D. thesis, Stanford University, 2003.Google Scholar
  6. 6.
    Keehm, Y., T. Mukerji, and A. Nur, Permeability prediction from thin sections: 3D reconstruction and lattice-boltzmann flow simulation, Geophys. Res. Lett., 31, L04, 606, 2004.CrossRefGoogle Scholar
  7. 7.
    Kristek, J., and P. Moczo, Seismic-wave propagation in viscoelastic media with material discontinuities: A 3D fourth-order staggered-grid finite-difference modeling, Bull., Seis Soc. Am., 93(5), 2273–2280, 2003.CrossRefGoogle Scholar
  8. 8.
    Ladd, A. J. C., Numerical simulations of particulate suspensions via a discretized boltzmann equation: Part 2. numerical results, J. Fluid Mech., 271, 311–339, 1994.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mavko, G., T. Mukerji, and J. Dvorkin, The Rock Physics Handbook, Cambridge University Press, Cambridge, 1998.Google Scholar
  10. 10.
    Moczo, P., J. Kristek, and E. Bystrický, Efficiency and optimization of the 3-D finite-difference modeling of seismic ground motion, Journal of Computational Acoustics, 9(2), 593–609, 2001.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Roberts, A. P., and E. J. Garboczi, Computation of the linear elastic properties of random porous materials with a wide variety of microstructure, Proc. R. Soc. Lond. A, 458, 1033–1054, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Saenger, E. H., N. Gold, and S. A. Shapiro, Modeling the propagation of elastic waves using a modified finite-difference grid, Wave Motion, 31(1), 77–92, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Saenger, E. H., O. S. Krüger, and S. A. Shapiro, Effective elastic properties of randomly fractured soils: 3D numerical experiments, Geophys. Prosp., 52(3), 183–195, 2004a.CrossRefGoogle Scholar
  14. 14.
    Saenger, E. H., O. S. Krüger, and S. A. Shapiro, Numerical considerations of fluid effects on wave propagation: Influence of the tortuosity, Geophys. Res. Lett., 31, L21, 613, 2004b.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Erik H. Saenger
    • 1
  • Youngseuk Keehm
    • 2
  • Serge A. Shapiro
    • 1
  1. 1.Fachrichtung GeophysikFreie Universität BerlinBerlinGermany
  2. 2.Stanford Rock Physics Lab.Stanford UniversityUSA

Personalised recommendations