Advertisement

Anticipating Extreme Events

  • Mihai Nadin
Part of the The Frontiers Collection book series (FRONTCOLL)

Summary

The urgency explicit in soliciting scientists to address the prediction of Xevents is understandable, but not really conducive to a foundational perspective. In the following methodological considerations, a perspective is submitted that builds upon the necessary representation of Xevents, either in mathematical or in computational terms. While only of limited functional nature, the semiotic methodology suggested is conducive to the basic questions associated with Xevent prediction: the dynamics of unfolding Xevents; the distinction between Xevents in the deterministic realm of physics and the nondeterministic realm of the living; the foundation of anticipation and the possibility of anticipatory computing; the holistic perspective. As opposed to case studies, this contribution is geared towards a model-based description that corresponds to the nonrepetitive nature of Xevents. Therefore, it advances a complementary model of science focused on singularity, providing a nondeterministic understanding of high-complexity phenomena.

Keywords

Extreme Event Epileptic Seizure Possibility Distribution Biological Weapon Interpretant Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heraclitus, as mentioned in Plato: Cratylus, 402AGoogle Scholar
  2. 2.
    Peirce, C.S.: “Indeed, representation necessarily involves a genuine triad. For it involves a sign, or representamen, of some kind, inward or outward, mediating between an object and an interpreting thought...”. The Logic of Mathematics (1896). In: Hartshorne, C., Weiss, P., eds., Collected Papers of Charles Sanders Peirce, Harvard University Press, Cambridge, MA (1931), pp 1–480Google Scholar
  3. 3.
    Peirce, C.S.: “A sign is something which stands for another thing to a mind.” In: Of Logic as a Study of Signs, MS 380 (1873). See also: The Writings of Charles S. Peirce, Volume 3, 1872–1878, pp. 82–83. Peirce Edition Project, Christiane S.W. Kloesel et al, Eds. Bloomington IN: Indiana University Press, 1998Google Scholar
  4. 4.
    Peirce, C.S.: “Anything which determines something else (its interpretant) to refer to an object to which itself refers (its object) in the same way, the interpretant becoming in turn a sign, and so on ad infinitum” (1902). In: Hartshorne, C., Weiss, P., eds., Collected Papers of Charles Sanders Peirce, Harvard University Press, Cambridge, MA (1931), pp 2–303Google Scholar
  5. 5.
    Peirce, C.S.: “A sign is intended to correspond to a real thing.” In: Foundations of Mathematics, MS 9 (1903) 76 Definitions of the Sign by C.S. Peirce, researched and collected by Robert Marty. cf. http://members.door.net/arisbe/menu/library/rsources/76defs/76defs.htmGoogle Scholar
  6. 6.
    Schneiderman, B.: Designing the User Interface, Addison Wesley, Boston, MA (1998), p. 185Google Scholar
  7. 7.
    Morris, C.: Foundations of the Theory of Signs, In: Neurath, O., ed., International Encyclopedia of Unified Science, vol. 1, no. 2, University of Chicago Press, Chicago, IL (1938)Google Scholar
  8. 8.
    Nadin, M.: Zeichen und Wert, Gunter Narr Verlag, Tübingen (1981)Google Scholar
  9. 9.
    Marty, R.: Catégories et foncteurs en sémiotique, Semiotica 6, Agis Verlag, Baden-Baden (1977), pp 5–15Google Scholar
  10. 10.
    Marty, R.: Une formalisation de la sémiotique de C.S. Peirce á l’aide de la théorie de categories, Ars Semeiotica, vol. II, no. 3, John Benjamins BV, Amsterdam (1977), pp 275–294Google Scholar
  11. 11.
    Marty, R.: L’algebre des signes, A John Benjamins, Amsterdam (1990)Google Scholar
  12. 12.
    Goguen, J.: Algebraic Semiotics Homepage (see http://www.cs.ucsd.edu/users/goguen/projs/semio.html), last accessed August 2005Google Scholar
  13. 13.
    NSF/ CSPO/ NCAR, Extreme Events: Developing a Research Agenda for the 21st Century, conference sponsored by the National Science Foundation (NSF), organized by the Center for Science, Policy, and Outcomes (CSPO) at Columbia University and the Environmental and Societal Impacts Group of the National Center for Atmospheric Research (NCAR), Boulder, CO, 7–9 June (2000)Google Scholar
  14. 14.
    Gallese, V.: The Inner Sense of Action. Agency and Motor Representation, In: Journal of Consciousness Studies 7, vol. 10 (2000), pp 23–40Google Scholar
  15. 15.
    Nadin, M.: The Civilization of Illiteracy, Dresden University Press, Dresden (1997)Google Scholar
  16. 16.
    Gödel, K.: Über formal unentscheidbare sätze der Principia mathematica und verwandter systeme. In: Monatshefte für Mathematik und Physik, 38 (1931), pp 173–198; translated in van Heijenoort, From Frege to Gödel, Harvard University Press, Cambridge (1971). The exact wording of his first theorem is “In any consistent formalization of mathematics that is sufficiently strong to define the concept of natural numbers, one can construct a statement that can be neither proved nor disproved within the system.” His second theorem states: “No consistent system can be used to prove its own consistency.”CrossRefGoogle Scholar
  17. 17.
    Rosen, R.: Anticipatory Systems, Pergamon Press, New York (1985)Google Scholar
  18. 18.
    Nadin, M.: Anticipation: The End Is Where We Start From, Lars Müller Verlag, Basel (2003)Google Scholar
  19. 19.
    Rosen, R.: Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life, Columbia University Press, New York (1991)Google Scholar
  20. 20.
    Berry, II, M.J., Brivanlou, I.H., Jordan, T.A., Meister, M.: Anticipation of Moving Stimuli by the Retina, In: Nature, vol. 398 (1999), pp 334–338CrossRefADSGoogle Scholar
  21. 21.
    Ekman, P., Friesen, W.V.: Facial Action Coding System: A Technique for the Measurement of Facial Movement, Consulting Psychologists Press, Palo Alto (1978)Google Scholar
  22. 22.
    Fletcher, P.C., Anderson, J.M., Shanks, D.R., Honey, R., Carpenter, T.A., Donovan, T., Papdakis, N., Bullmore, E.T.: Responses of Human Frontal Cortex to Surprising Events are Predicted by Formal Associative Learning Theory, In: Nature Neurosciences, vol. 4, no. 10 (2001), pp 1043–1048CrossRefGoogle Scholar
  23. 23.
    Ishida, F., Sawada, Y.F: Human Hand Moves Proactively to the External Stimulus: An Evolutional Strategy for Minimizing Transient Error, In: Physical Review Letters, vol. 93, no. 16 (2004)Google Scholar
  24. 24.
    Nadin, M.: Mind-Anticipation and Chaos, Belser Verlag, Stuttgart (1991)Google Scholar
  25. 25.
    Minsky, M.: The Virtual Duck and the Endangered Nightingale, In: Digital Media, June 5 (1995), pp 68–74Google Scholar
  26. 26.
    Nicolis, M., Dragan Dimitrov, A.L., Carmena, J.M., Christ, R., Lehew, G., Kralik, J.D., Wise, S.P.: Chronic, Multisite, Multielectrode Recordings in Macaque Monkeys, In: Proceedings of the National Academy of Sciences of the Unites States of America (PNAS Online), Sept. 5 (2003)Google Scholar
  27. 27.
    Quoetone, E., Huckabee, K.L.: Anatomy of an Effective Warning: Event Anticipation, Data Integration, Feature Recognition, Preprints, 14th Conf. On Weather Analysis and Forecasting, Amer. Meteor. Soc., Dallas, TX (1995), pp 420–425Google Scholar
  28. 28.
    Guiasu, S.: Comment on a Paper on Possibilistic Entropies, In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, no. 6 (2002), pp 655–657CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Feynman, R.: Potentialities and Limitations of Computing Machines, Lecture series, California Institute of Technology, CA (1983–1986)Google Scholar
  30. 30.
    Feigenbaum, M.: Universal Behavior in Non-linear Systems, In: Los Alamos Science, vol. 1 (1980), pp 4–27MathSciNetGoogle Scholar
  31. 31.
    BES, The Scientific Rationale of the British Ecological Society (BES) Symposium, March—April (2005)Google Scholar
  32. 32.
    Montgomery, R.: Nonholonomic Control and Gauge Theory, In: Canny, J., Li, Z., eds., Nonholonomic Motion Planning, Kluwer Academic, Dordrecht (1993), pp 343–378Google Scholar
  33. 33.
    Heisenberg, W.: Uncertainty Principle, first published in Zeitschrift für Physik, vol. 43 (1927), pp 172–198Google Scholar
  34. 34.
    Elsasser, W.M.: Reflections on a Theory of Organisms, Johns Hopkins University Press, Baltimore, MD (1998). Originally published as Reflections on a Theory of Organisms. Hoilism in Biology, Orbis, Frelighsburg, Quebec (1987)Google Scholar
  35. 35.
    Windelband, W.: Geschichte und Naturwissenschaft (1894) (cf. Strassburger Rektoratsrede. http://www.fh-augsburg.de/~harsch/germanica/Chronologie/ 19Jh/Windelband/win rede.html)Google Scholar
  36. 36.
    Rosen, R.: Essays on Life Itself. Complexity in Ecological Systems, Columbia University Press, New York (2000), pp 324–324Google Scholar
  37. 37.
    Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps, In: Biological Cybernetics, vol. 43 (1982), pp 43–69CrossRefMathSciNetGoogle Scholar
  38. 38.
    Kohonen, T.: Self-Organizing Maps, Springer, Berlin Heidelberg New York (1997)zbMATHGoogle Scholar

Copyright information

© Center for Frontier Sciences 2006

Authors and Affiliations

  • Mihai Nadin
    • 1
  1. 1.Instutute for Research in Anticipatory SystemsUniversity of Texas at DallasRichardsonUSA

Personalised recommendations