A Primer in 3D Radiative Transfer

  • A.B. Davis
  • Y. Knyazikhin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aida, M. (1977a). Reflection of solar radiation from an array of cumuli. J. Met. Soc. Japan, 55, 174–181.Google Scholar
  2. Aida, M. (1977b). Scattering of solar radiation as a function of cloud dimensions and orientation. J. Quant. Spectrosc. Radiat. Transfer, 17, 303–310.Google Scholar
  3. Antyufeev, V.S. and A.N. Bondarenko (1996). X-ray tomography in scattering media. SIAM J. Appl. Math., 56, 573–587.Google Scholar
  4. Appleby, J.F. and D. van Blerkom (1975). Absorption line studies of reflection from horizontally inhomogeneous layers. Icarus, 24, 51–69.Google Scholar
  5. Avaste, O.A. and G.M. Vainikko (1974). Solar radiative transfer in broken clouds. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 10, 1054–1061.Google Scholar
  6. Barkstrom, B.R. and R.F. Arduini (1977). The effect of finite size of clouds upon the visual albedo of the earth. In Radiation in the Atmosphere. H.-J. Bolle (ed.). Science Press, Princeton (NJ), pp. 188–190.Google Scholar
  7. Bell, G.I. and S. Glasstone (1970). Nuclear Reactor Theory. Van Nostrand Reinholt, New York (NY).Google Scholar
  8. Berry, M.V. and I.C. Percival (1986). Optics of fractal clusters such as smoke. Optica Acta, 33, 577–591.Google Scholar
  9. Bohren, C.F., J.R. Linskens, and M.E. Churma (1995). At what optical thickness does a cloud completely obscure the sun? J. Atmos. Sci., 52, 1257–1259.Google Scholar
  10. Box, M.A., Keevers, M., and B.H.J. McKellar, (1988). On the perturbation series for radiative effects. J. Quant. Spectrosc. Radiat. Transfer, 39, 219–223.Google Scholar
  11. Box, M.A., S.A.W. Gerstl, and C. Simmer (1989). Computation of atmospheric radiative effects via perturbation theory. Beitr. Phys. Atmosph., 62, 193–199.Google Scholar
  12. Box, M.A., Polonsky, I.N., and A.B. Davis (2003). Radiative transfer through inhomogeneous turbid media: Implementation of the adjoint perturbation approach at the first-order. J. Quant. Spectrosc. Radiat. Transfer, 78, 85–98.Google Scholar
  13. Cannon, C.J. (1970). Line transfer in two dimensions. Astrophys. J., 161, 255–264.Google Scholar
  14. Capra, F. (1991). The Tao of Physics. Shambhala Publ., Boston (MA), 3rd edition.Google Scholar
  15. Case, K.M. and P.F. Zweifel (1967). Linear Transport Theory. Addison-Wesley, Reading (MA).Google Scholar
  16. Chandrasekhar, S. (1950). Radiative Transfer. Oxford University Press, reprinted by Dover Publications (1960), New York (NY).Google Scholar
  17. Chandrasekhar, S. (1958). On the diffuse reflection of a pencil of radiation by a plane-parallel atmosphere. Proc. Natl. Acad. Sci. U.S.A., 44, 933–940.Google Scholar
  18. Choulli, M. and P. Stefanov (1996). Reconstruction of the coefficient of the stationary transport equation from boundary measurements. Inverse Problems, 12, L19–L23.Google Scholar
  19. Davies, R. (1978). The effect of finite geometry on the three-dimensional transfer of solar irradiance in clouds. J. Atmos. Sci., 35, 1712–1725.Google Scholar
  20. Davies, R. and J.A. Weinman (1977). Results from two models of the three dimensional transfer of solar radiation in finite clouds. In Radiation in the Atmosphere. H.-J. Bolle (ed.). Science Press, Princeton (NJ), pp. 225–227.Google Scholar
  21. Davis, A.B. (2002). Cloud remote sensing with sideways-looks: Theory and first results using Multispectral Thermal Imager (MTI) data. In SPIE Proceedings: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII. S.S. Shen and P.E. Lewis (eds.). S.P.I.E. Publications, Bellingham, WA, pp. 397–405.Google Scholar
  22. Davis, A.B. and A. Marshak (2001). Multiple scattering in clouds: Insights from three-dimensional diffusion/P1 theory. Nuclear Sci. and Engin., 137, 251–280.Google Scholar
  23. Davis, A.B. and A. Marshak (2004). Photon propagation in heterogeneous optical media with spatial correlations: Enhanced mean-free-paths and wider-than-exponential free-path distributions. J. Quant. Spectrosc. Radiat. Transfer, 84, 3–34.Google Scholar
  24. Davis, A.B., R.F. Cahalan, J.D. Spinhirne, M.J. McGill, and S.P. Love (1999). Off-beam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth (B), 24, 757–765.Google Scholar
  25. Deirmendjian, D. (1969). Electromagnetic Scattering on Spherical Polydispersions. Elsevier, New York (NY).Google Scholar
  26. Di Girolamo, L., T. Várnai, and R. Davies (1998). Apparent breakdown of reciprocity in reflected solar radiances. J. Geophys. Res., 103, 8795–8803.Google Scholar
  27. Diner, D.J., G.P. Asner, R. Davies, Yu. Knyazikhin, J.-P. Muller, A.W. Nolin, B. Pinty, C.B. Schaaf, and J. Stroeve (1999). New directions in Earth observing: Scientific application of multi-angle remote sensing. Bull. Amer. Meteor. Soc., 80, 2209–2228.Google Scholar
  28. Dutton, E.G., A. Farhadi, R.S. Stone, C.N. Long, and D.W. Nelson (2004). Long-term variations in the occurrence and effective solar transmission of clouds as determined from surface-based total irradiance observations. J. Geophys. Res., 109, D03204, doi:10.1029/2003JD003568.Google Scholar
  29. Germogenova, T.A. (1986). The Local Properties of the Solution of the Transport Equation (in Russian). Nauka, Moscow (Russia).Google Scholar
  30. Giovanelli, R.G. (1959). Radiative transfer in non-uniform media. Aust. J. Phys., 12, 164–170.Google Scholar
  31. Giovanelli, R.G. and J.T. Jefferies (1956). Radiative transfer with distributed sources. Lond. Phys. Soc. Proc., 69, 1077–1084.Google Scholar
  32. Henyey, L.C. and J.L. Greenstein (1941). Diffuse radiation in the galaxy. Astrophys. J., 93, 70–83.Google Scholar
  33. Ishimaru, A. (1975). Correlations functions of a wave in a random distribution of stationary and moving scatterers. Radio Science, 10, 45–52.Google Scholar
  34. Kaufman, Y.J. (1979). Effect of the Earth’s atmosphere on contrast for zenith observation. J. Geophys. Res., 84, 3165–3172.Google Scholar
  35. Knyazikhin, Yu., A. Marshak, W.J. Wiscombe, J. Martonchik, and R.B. Myneni (2002). A missing solution to the transport equation and its effect on estimation of cloud absorptive properties. J. Atmos. Sci., 59, 3572–3585.Google Scholar
  36. Lilienfeld, P. (2004). A blue sky history. Optics and Photonics News (OPN), 15, 32–39.Google Scholar
  37. Liou, K.-N. (2002). An Introduction to Atmospheric Radiation. Academic Press, San Diego (CA), 2nd edition.Google Scholar
  38. Lovejoy, S. (1982). The area-parameter relation for rain and clouds. Science, 216, 185–187.Google Scholar
  39. Lyapustin, A.I. and Yu. Knyazikhin (2002). Green’s function method for the radiative transfer problem. 2. Spatially heterogeneous anisotropic surface. Applied Optics, 41, 5600–5606.Google Scholar
  40. Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. W. H. Freeman, New York (NY).Google Scholar
  41. Marchuk, G. (1964). Equation for the value of information from weather satellites and formulation of inverse problems. Kosm. Issled., 2, 462–477.Google Scholar
  42. Marchuk, G., G. Mikhailov, M. Nazaraliev, R. Darbinjan, B. Kargin, and B. Elepov (1980). The Monte Carlo Methods in Atmospheric Optics. Springer-Verlag, New York (NY).Google Scholar
  43. Marshak, A., Yu. Knyazikhin, A.B. Davis, W.J. Wiscombe, and P. Pilewskie (2000). Cloud — vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness. Geophys. Res. Lett., 27, 1695–1698.Google Scholar
  44. Marshak, A., Yu. Knyazikhin, K.D. Evans, and W.J. Wiscombe (2004). The “RED versus NIR” plane to retrieve broken-cloud optical depth from ground-based measurements. J. Atmos. Sci., 61, 1911–1925.Google Scholar
  45. McKee, T.B. (1976). Simulated radiance patterns for finite cubic clouds. J. Atmos. Sci., 33, 2014–2020.Google Scholar
  46. McKee, T.B. and S.K. Cox (1974). Scattering of visible radiation by finite clouds. J. Atmos. Sci., 31, 1885–1892.Google Scholar
  47. Mihalas, D. (1979). Stellar Atmospheres. Freeman, San Francisco (CA), 2nd edition.Google Scholar
  48. Minnaert, M. (1941). The reciprocity principle in lunar photometry. Astrophys. J., 93, 403–410.Google Scholar
  49. Mishchenko, M.I. (2003). Radiative transfer theory: From Maxwell’s equations to practical applications. In Wave Scattering in Complex Media: From Theory to Applications. B.A. van Tiggelen and S.E. Skipetrov (eds.). Kluwer Academic, Dordrecht (the Netherlands), pp. 367–414.Google Scholar
  50. Mishchenko, M.I., J.W. Hovenier, and L.D. Travis (2000). Light Scattering by Non-Sperical Particles. Academic Press, San Diego (CA).Google Scholar
  51. Mullamaa, Ü.-A.R., M.A. Sulev, V.K. Poldmaa, H.A. Ohvril, H.J. Niilisk, M.I. Allenov, L.G. Chubakov, and A.E. Kuusk (1972). Stochastic Structure of Cloud and Radiation Fields, Ü.-A. R. Mullamaa (ed.). IPA, Acad. Sci. Est. SSR, Tartu, 282 pp (in Russian, English translation: 1975. Technical Report TT F-822, NASA Technical Translation, Washington (DC).Google Scholar
  52. Nicodemus, F.E., J.C. Richmond, J.J. Hsia, I.W. Ginsberg, and T. Limperis (1977). Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards, NBS Monograph No. 160.Google Scholar
  53. Odell, A.P. and J.A. Weinman (1975). The effect of atmospheric haze on images of the Earth’s surface. J. Geophys. Res., 80, 5035–5040.Google Scholar
  54. Otterman, J. and R.S. Fraser (1979). Adjacency effects on imaging by surface reflection and atmospheric scattering: Cross radiance zenith. Appl. Opt., 18, 2852–2860.Google Scholar
  55. Polonsky, I.N., M.A. Box, and A.B. Davis (2003). Radiative transfer through inhomogeneous turbid media: Implementation of the adjoint perturbation approach at the first-order. J. Quant. Spectrosc. Radiat. Transfer, 78, 85–98.Google Scholar
  56. Rahman, H., B. Pinty, and M.M. Verstraete (1993). Coupled surface-atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data. J. Geophys. Res., 98, 20,791–20,801.Google Scholar
  57. Ramanathan, V., P.J. Crutzen, A.P. Mitra, and D. Sikka (2002). The INDian Ocean EXperiment and the Asian brown cloud. Curr. Sci., 83, 947–955.Google Scholar
  58. Richards, P.I. (1956). Scattering from a point-source in plane clouds. J. Opt. Soc. Am., 46, 927–934.CrossRefGoogle Scholar
  59. Romanova, L.M. (1968a). Light field in the boundary layer of a turbid medium with strongly anisotropic scattering illuminated by a narrow beam. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 4, 1185–1196 (in Russian), 679–685 (English translation).Google Scholar
  60. Romanova, L.M. (1968b). The light field in deep layers of a turbid medium illuminated by a narrow beam. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 4, 311–320 (in Russian), 175–179 (English translation).Google Scholar
  61. Romanova, L.M. (1971a). Effective size of the light spot on the boundaries of a thick turbid medium illuminated by a narrow beam. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 7, 410–420 (in Russian), 270–277 (English translation).Google Scholar
  62. Romanova, L.M. (1971b). Some characteristics of the light field generated by a point-collimated stationary light source in clouds and fog. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 7, 1153–1164 (in Russian), 758–764 (English translation).Google Scholar
  63. Romanova, L.M. (1975). Radiative transfer in a horizontally inhomogeneous scattering medium. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 11, 509–513.Google Scholar
  64. Ronnholm, K., M.B. Baker, and H. Harrison (1980). Radiation transfer through media with uncertain or random parameters. J. Atmos. Sci., 37, 1279–1290.Google Scholar
  65. Schuster, A. (1905). Radiation through a foggy atmosphere. Astrophys. J., 21, 1–22.Google Scholar
  66. Schwartz, L. (1950). Théorie des Distributions, 2 vols. Hermann, Paris (France).Google Scholar
  67. Siegel, R. and J.R. Howell (1981). Thermal Radiation Heat Transfer. McGraw-Hill, New York (NY), 2nd edition.Google Scholar
  68. van Blerkom, D.J. (1971). Diffuse reflection from clouds with horizontal inhomogeneities. Astrophys. J., 166, 235–242.Google Scholar
  69. Weber, P.G., B.C. Brock, A.J. Garrett, B.W. Smith, C.C. Borel, W.B. Clodius, S.C. Bender, R. Rex Kay, and M.L. Decker (1999). Multispectral Thermal Imager mission overview. SPIE Proceedings, 3753, 340–346.Google Scholar
  70. Weinman, J.A. and P.N. Swartztrauber (1968). Albedo of a striated medium of isotropically scattering particles. J. Atmos. Sci., 34, 642–650.Google Scholar
  71. Wendling, P. (1977). Albedo and reflected radiance of horizontally inhomogeneous clouds. J. Atmos. Sci., 34, 642–650.Google Scholar
  72. Wiscombe, W.J. (1977). The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci., 34, 1408–1422.Google Scholar
  73. Wolf, E. (1976). New theory of radiative energy transfer in free electromagnetic fields. Phys. Rev. D, 13, 869–886.Google Scholar
  74. Yodh, A. and B. Chance (1995). Spectroscopy and imaging with diffusing light. Phys. Today, 48, 34–40.Google Scholar
  75. Zhang, Y., N. Shabanov, Yu. Knyazikhin, and R.B. Myneni (2002). Assessing the information content of multiangle satellite data for mapping biomes. II. Theory. Remote Sens. Environ., 80, 435–446.Google Scholar

Suggested Reading

  1. Chandrasekhar, S. (1950). Radiative Transfer. 393 pp., Oxford University Press, London (United Kingdom): reprinted by Dover (1960), New York (NY).Google Scholar
  2. Davison, B. (1958). Neutron Transport Theory. 450 pp., Oxford University Press, London (United Kingdom).Google Scholar
  3. Vladimirov, V.S. (1963). Mathematical Problems in the One-Velocity Theory of Particle Transport, Tech. Rep. AECL-1661, Atomic Energy of Canada Ltd., Chalk River, Ontario.Google Scholar
  4. Case, K.M. and P.F. Zweifel (1967). Linear Transport Theory. Addison-Wesley Publ. Co., Reading (MA).Google Scholar
  5. Bell, G.I. and S. Glasstone (1970). Nuclear Reactor Theory. 619 pp., Van Nostrand Reinholt, New York (NY).Google Scholar
  6. Pomraning, G.C. (1973). The Equations of Radiation Hydrodynamics. 288 pp., Oxford-Pergamon Press, New York (NY).Google Scholar
  7. Preisendorfer, R.W. (1978). Hydrological Optics, NOAA-PMEL (Hawaii).Google Scholar
  8. Ishimaru, A. (1978). Wave Propagation and Scattering in Random Media. 2 vols., Academic Press, New York (NY).Google Scholar
  9. Mihalas, D. (1979). Stellar Atmospheres. 2nd ed., xvii+632 pp., Freeman, San Francisco (CA).Google Scholar
  10. van de Hulst, H.C. (1980). Multiple Light Scattering: Tables, Formulas, and Applications. 2 vols., Academic Press, San Diego (CA).Google Scholar
  11. Welch, R.M., S.K. Cox and J. M. Davis (1980). Solar Radiation and Clouds. Meteorological Monograph Series, Vol. 17 (No. 39), American Meteorological Society, Boston (MA).Google Scholar
  12. Siegel, R. and J.R. Howell (1981). Thermal Radiation Heat Transfer. 2nd ed., xvi+862 pp., McGraw-Hill, New York (NY).Google Scholar
  13. Bohren, C.F. and D.R. Huffman (1983). Absorption and Scattering of Light by Small Particles. xiv+530 pp., Wiley, New York (NY).Google Scholar
  14. Lenoble, J. (ed.) (1985). Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. A. Deepak Publ., Hampton (VA).Google Scholar
  15. Germogenova, T.A. (1986). The Local Properties of the Solution of the Transport Equation (in Russian). 272 pp., Nauka, Moscow (Russia).Google Scholar
  16. Goody, R.M. and Y.L. Yung (1989). Atmospheric Radiation: Theoretical Basis. xiii+519 pp., Oxford University Press, New York (NY).Google Scholar
  17. Lewis, E.E. and W.F. Miller, Jr. (1993). Computational Methods of Neutron Transport. xvi+401 pp., American Nuclear Society, La Grange Park (IL).Google Scholar
  18. Stephens, G.L. (1994). Remote Sensing of the Lower Atmosphere: An Introduction. xvi+523 pp., Oxford University Press, New York (NY).Google Scholar
  19. Lenoble, J. (1993). Atmospheric Radiative Transfer. 532 pp., A. Deepak Publ., Hampton (VA).Google Scholar
  20. Thomas, G.E. and K. Stamnes (1999). Radiative Transfer in the Atmosphere and Ocean. 546 pp., Cambridge University Press, New York (NY).Google Scholar
  21. Wolf, E. (2001). Selected Works of Emil Wolf, with Commentary. x+661 pp., World Scientific Co., Singapore.Google Scholar
  22. Liou, K.N. (2002). An Introduction to Atmospheric Radiation. 2nd Ed., xiv+583 pp., Academic Press, San Diego (CA).Google Scholar
  23. Kokhanovsky, A.A. (2004). Light Scattering Media Optics, Problems and Solutions. 3rd ed., Springer, Heidelberg (Germany).Google Scholar
  24. Irvine, W.M. (1964). The formation of absorption bands and the distribution of photon optical paths in a scattering atmosphere. Bull. Astron. Inst. Neth., 17, 266–279.Google Scholar
  25. Ivanov, V.V. and S.D. Gutshabash (1974). Propagation of brightness wave in an optically thick atmosphere. Physika Atmosphery i Okeana, 10, 851–863.Google Scholar
  26. Davis, A. and A. Marshak (1997). Lévy kinetics in slab geometry: Scaling of transmission probability. In Fractal Frontiers, M.M. Novak and T.G. Dewey (eds.), World Scientific, Singapore, pp. 63–72.Google Scholar
  27. Davis, A.B. and A. Marshak (2001). Multiple scattering in clouds: Insights from three-dimensional diffusion/P1 theory. Nucl. Sci. Eng., 137, 251–288.Google Scholar
  28. Platnick, S. (2001). A superposition technique for deriving photon scattering statistics in plane-parallel cloudy atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 68, 57–73.Google Scholar
  29. Davis, A.B. and A. Marshak (2002). Space-time characteristics of light transmitted by dense clouds: A Green function analysis. J. Atmos. Sci., 59, 2713–2727.Google Scholar
  30. Pfeilsticker, K., F. Erle, O. Funk, H. Veitel and U. Platt (1998). First geometrical pathlength distribution measurements of skylight using the oxygen A-band absorption technique — I, Measurement technique, atmospheric observations, and model calculations. J. Geophys. Res., 103, 11,483–11,504.Google Scholar
  31. Pfeilsticker, K. (1999). First geometrical pathlength distribution measurements of skylight using the oxygen A-band absorption technique-II, Derivation of the Lévy-index for skylight transmitted by mid-latitude clouds. J. Geophys. Res., 104, 4101–4116.Google Scholar
  32. Min, Q.-L. and L.C. Harrison (1999). Joint statistics of photon pathlength and cloud optical depth. Geophys. Res. Lett., 26, 1425–1428.Google Scholar
  33. Stephens, G.L. and A. Heidinger (2000). Molecular line absorption in a scattering atmosphere — Part I: Theory. J. Atmos. Sci., 57, 1599–1614.Google Scholar
  34. Heidinger, A. and G.L. Stephens (2000). Molecular line absorption in a scattering atmosphere — Part II: Application to remote-sensing in the O2 A-Band. J. Atmos. Sci., 57, 1615–1634.Google Scholar
  35. Min, Q.-L., L.C. Harrison and E.E. Clothiaux (2001). Joint statistics of photon pathlength and cloud optical depth: Case studies. J. Geophys. Res., 106, 7375–7385.Google Scholar
  36. Portman, R.W., S. Solomon, R.W. Sanders, J.S. Daniels and E.G. Dutton (2001). Cloud modulation of zenith sky oxygen photon path lengths over Boulder: Measurement versus model. J. Geophys. Res., 106, 1139–1155.Google Scholar
  37. Heidinger, A. and G.L. Stephens (2002). Molecular line absorption in a scattering atmosphere — Part III: Path length characteristics and the effects of spatially heterogeneous clouds. J. Atmos. Sci., 59, 1641–1654.Google Scholar
  38. Min, Q.-L., L.C. Harrison, P. Kiedron, J. Berndt and E. Joseph (2004). A high-resolution oxygen A-band and water vapor band spectrometer. J. Geophys. Res., 109, D02202, doi:10.1029/2003JD003540.Google Scholar
  39. Winker, D.M. and L.R. Poole (1995). Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARs. Applied Physics B-Lasers and Optics, B60, 341–344.Google Scholar
  40. Winker, D.M., R.H. Couch and M.P. McCormick (1996). An overview of LITE: NASA’s Lidar In-space Technology Experiment. Proc. IEEE, 84, 164–180.Google Scholar
  41. Miller, S.D. and G.L. Stephens (1999). Multiple scattering effects in the lidar pulse stretching problem. J. Geophys. Res., 104, 22,205–22,219.Google Scholar
  42. Davis, A.B., R.F. Cahalan, J.D. Spinhirne, M.J. McGill and S.P. Love (1999). Off-beam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth (B), 24, 757–765.Google Scholar
  43. Davis, A.B., D.M. Winker and M.A. Vaughan (2001). First retrievals of dense cloud properties from off-beam/multiple-scattering lidar data collected in space. In Laser Remote sensing of the atmosphere: Selected Papers from the 20th International Conference on Laser Radar, A. Dabas and J. Pelon (eds.), École Polytechnique, Palaiseau (France), pp. 35–38.Google Scholar
  44. Kotchenova, S.Y., N.V. Shabanov, Y. Knyazikhin, A.B. Davis, R. Dubayah and R.B. Myneni (2003). Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest biomass. J. Geophys. Res., 108(D15), 4484, doi:1029/2002JD003288.Google Scholar
  45. Evans, K.F., R.P. Lawson, P. Zmarzly, D. O’Connor and W.J. Wiscombe (2003). In situ cloud sensing with multiple scattering lidar: Simulations and demonstration. J. Atmos. Ocean Tech., 20, 1505–1522.Google Scholar
  46. Thomason, L.W. and E.P. Krider (1982). The effects of clouds on the light produced by lightning. J. Atmos. Sci., 39, 2051–2065.Google Scholar
  47. Koshak, W.J., R.J. Solakiewicz, D.D. Phanord and R.J. Blakeslee (1994). Diffusion model for lightning radiative transfer. J. Geophys. Res., 99, 14,361–14,371.Google Scholar
  48. Light, T.E., D.M. Suszcynsky, M.W. Kirkland and A.R. Jacobson (2001). Simulations of lightning optical waveforms as seen through clouds by satellites. J. Geophys. Res., 106, 17,103–17,114.Google Scholar
  49. Mekler, Y. and Y.J. Kaufman (1980). The effect of Earth’s atmosphere on contrast reduction for a nonuniform surface albedo and “two-halves” field. J. Geophys. Res., 85, 4067–4083.Google Scholar
  50. Otterman, J., S. Ungar, Y. Kaufman and M. Podolak (1980). Atmospheric effects on radiometric imaging from satellites under low optical thickness conditions. Remote Sens. Environ., 9, 115–129.Google Scholar
  51. Tanré, D., M. Herman and P.-Y. Deschamps (1981). Influence of the background contribution upon space measurements of ground reflectance. Appl. Optics., 20, 3676–3684.CrossRefGoogle Scholar
  52. Kaufman, Y.J. (1982). Solution of the equation of radiative-transfer for remote-sensing over nonuniform surface reflectivity. J. Geophys. Res., 87, 4137–4147.Google Scholar
  53. Diner, D.J. and J.V. Martonchik (1984). Atmospheric transfer of radiation above an inhomogeneous non-Lambertian ground: 1 — Theory. J. Quant. Spectrosc. Radiat. Transfer, 31, 97–125.Google Scholar
  54. Diner, D.J. and J.V. Martonchik (1984). Atmospheric transfer of radiation above an inhomogeneous non-Lambertian ground: 2 — Computational considerations and results. J. Quant. Spectrosc. Radiat. Transfer, 31, 279–304.Google Scholar
  55. Takashima, T. and K. Masuda (1992). Simulation of atmospheric effects on the emergent radiation over a checkerboard type of terrain. Astrophys. Space Sci., 198, 253–263Google Scholar
  56. Reinersman, P.N. and K.L. Carder (1995). Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect. Appl. Optics., 34, 4453–4471.Google Scholar
  57. Lyapustin, A.I. (2001). Three-dimensional effects in the remote sensing of surface albedo. IEEE Trans. Geosc. and Remote Sens., 39, 254–263.Google Scholar
  58. Lyapustin, A.I. and Y. Kaufman (2001). Role of adjacency effect in the remote sensing of aerosol. J. Geophys. Res., 106, 11,909–11,916.Google Scholar
  59. Lyapustin, A.I. and Y. Knyazikhin (2002). Green’s function method for the radiative transfer problem. II. Spatially heterogeneous anisotropic surface. Appl. Optics., 41, 5600–5606.Google Scholar
  60. Weinman, J.A. and M. Masutani (1987). Radiative transfer models of the appearance of city lights obscured by clouds observed in nocturnal satellite images. J. Geophys. Res., 92, 5565–5572.Google Scholar
  61. Stephens, G.L. (1986). Radiative transfer in spatially heterogeneous, two-dimensional anisotropically scattering media, J. Quant. Spectrosc. Radiat. Transfer, 36, 51–67.Google Scholar
  62. Stephens, G.L. (1988). Radiative transfer through arbitrary shaped optical media, Part 1 — A general method of solution. J. Atmos. Sci., 45, 1818–1835.Google Scholar
  63. Ganapol, B.D., D.E. Kornreich, J.A. Dahl, D.W. Nigg, S.N. Jahshan and C.A. Temple (1994). The searchlight problem for neutrons in a semi-infinite medium. Nucl. Sci. Eng., 118, 38–53.Google Scholar
  64. Marshak, A., A. Davis, W.J. Wiscombe and R.F. Cahalan (1995). Radiative smoothing in fractal clouds. J. Geophys. Res., 100, 26,247–26,261.Google Scholar
  65. Kornreich, D.E. and B.D. Ganapol (1997). Numerical evaluation of the three-dimensional searchlight problem in a half-space. Nucl. Sci. Eng., 127, 317–337.Google Scholar
  66. Davis, A., A. Marshak, R.F. Cahalan and W.J. Wiscombe (1997). The Landsat scalebreak in stratocumulus as a three-dimensional radiative transfer effect: Implications for cloud remote sensing. J. Atmos. Sci., 54, 241–260.Google Scholar
  67. Davis, A.B., R.F. Cahalan, J.D. Spinhirne, M.J. McGill and S.P. Love (1999). Off-beam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth (B), 24, 757–765.Google Scholar
  68. Romanova, L.M. (2001). Narrow light beam propagation in a stratified cloud: Higher transverse moments. Izv. Atmos. Oceanic Phys., 37, 748–756.Google Scholar
  69. Platnick, S. (2001). Approximations for horizontal photon transport in cloud remote sensing problems. J. Quant. Spectrosc. Radiat. Transfer, 68, 75–99.Google Scholar
  70. Davis, A.B. and A. Marshak (2001). Multiple scattering in clouds: Insights from three-dimensional diffusion/P1 theory. Nucl. Sci. Eng., 137, 251–288.Google Scholar
  71. Davis, A.B. and A. Marshak (2002). Space-time characteristics of light transmitted by dense clouds: A Green function analysis. J. Atmos. Sci., 59, 2713–2727.Google Scholar
  72. Polonsky, I.N. and A.B. Davis (2004). Lateral photon transport in dense scatering and weakly absorbing media of finite thickness: Asymptotic analysis of the space-time Green functions. J. Opt. Soc. Amer. A, 21, 1018–1025.Google Scholar
  73. Borovoi, A.G. (1984). Radiative transfer in inhomogeneous media. Dok. Akad. Nauk SSSR, 276, 1374–1378. (English version in Sov. Phys. Dokl., 29(6).)Google Scholar
  74. Stephens, G.L. (1988). Radiative transfer through arbitrarily shaped media, Part 2 — Group theory and closures. J. Atmos. Sci., 45, 1836–1848.Google Scholar
  75. Evans, K.F. (1993). A general solution for stochastic radiative transfer. Geophys. Res. Lett., 20, 2075–2078.Google Scholar
  76. Davis, A. and A. Marshak (1997). Lévy kinetics in slab geometry: Scaling of transmission probability. In Fractal Frontiers, M.M. Novak and T.G. Dewey (eds.), World Scientific, Singapore, pp. 63–72.Google Scholar
  77. Cairns, B., A.W. Lacis and B.E. Carlson (2000). Absorption within inhomogeneous clouds and its parameterization in general circulation models. J. Atmos. Sci., 57, 700–714.Google Scholar
  78. Kostinski, A.B. (2001). On the extinction of radiation by a homogeneous but spatially correlated random medium. J. Opt. Soc. Amer. A, 18, 1929–1933.Google Scholar
  79. Shaw, R.A., A.B. Kostinski and D.D. Lanterman (2002). Super-exponential extinction of radiation in a negatively-correlated random medium. J. Quant. Spectrosc. Radiat. Transfer, 75, 13–20.Google Scholar
  80. Knyazikhin, Y., A. Marshak, W.J. Wiscombe, J. Martonchik and R.B. Myneni (2002). A missing solution to the transport equation and its effect on estimation of cloud absorptive properties. J. Atmos. Sci., 59, 3572–3585.Google Scholar
  81. Davis, A.B. and A. Marshak (2004). Photon propagation in heterogeneous optical media with spatial correlations: Enhanced mean-free-paths and wider-than-exponential free-path distributions. J. Quant. Spectrosc. Radiat. Transfer., 84, 3–34.Google Scholar
  82. Savigny, C. von, O. Funk, U. Platt and K. Pfeilsticker (1999). Radiative smoothing in zenith-scattered skylight transmitted through clouds to the ground. Geophys. Res. Lett., 26, 2949–2952.Google Scholar
  83. Davis, A.B., R.F. Cahalan, J.D. Spinhirne, M.J. McGill and S.P. Love (1999). Off-beam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth (B), 24, 757–765.Google Scholar
  84. Marshak, A., Y. Knyazikhin, A.B. Davis, W.J. Wiscombe and P. Pilewskie (2000). Cloud-vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness. Geophys. Res. Lett., 27, 1695–1698.Google Scholar
  85. Love, S.P., A.B. Davis, C. Ho and C.A. Rohde (2001). Remote sensing of cloud thickness and liquid water content with Wide-Angle Imaging Lidar (WAIL). Atm. Res., 59–60, 295–312.Google Scholar
  86. Barker, H.W. and A. Marshak (2001). Inferring optical depth of broken clouds above green vegetation using surface solar radiometric measurements. J. Atmos. Sci., 58, 2989–3006.Google Scholar
  87. Barker, H.W., A. Marshak, W. Szyrmer, A. Trishchenko, J.-P. Blanchet, and Z. Li (2002). Inference of cloud optical depth from aircraft-based solar radiometric measurements. J. Atmos. Sci., 59, 2093–2111.Google Scholar
  88. Evans, K.F., R.P. Lawson, P. Zmarzly, D. O’Connor and W.J. Wiscombe (2003). In situ cloud sensing with multiple scattering lidar: Simulations and demonstration. J. Atmos. Ocean Tech., 20, 1505–1522.Google Scholar
  89. Marshak, A., Yu. Knyazikhin, K.D. Evans and W.J. Wiscombe (2004). The “RED versus NIR” plane to retrieve broken-cloud optical depth from ground-based measurements. J. Atmos. Sci., 61, 1911–1925.Google Scholar
  90. Loeb, N.G. and R. Davies (1996). Observational evidence of plane parallel model biases: Apparent dependence of cloud optical depth on solar zenith angle. J. Geophys. Res., 101, 1621–1634.Google Scholar
  91. Di Girolamo, L. (1999). Reciprocity principle applicable to reflected radiance measurements and the searchlight problem. Appl. Optics, 38, 3196–3198.Google Scholar
  92. Diner, D.J., G.P. Asner, R. Davies, Y. Knyazikhin, J.P. Muller, A.W. Nolin, B. Pinty, C.B. Schaaf and J. Stroeve (1999). New directions in Earth observing: Scientific application of multi-angle remote sensing. Bull. Amer. Meteor. Soc., 80, 2209–2228.Google Scholar
  93. Knyazikhin, Y. and A. Marshak (2000). Mathematical aspects of BRDF modeling: Adjoint problem and Green’s function. Remote Sens. Rev. 18, 263–280.Google Scholar
  94. Martonchik, J.V., C.J. Bruegge and A. Strahler (2000). A review of reflectance nomenclature used in remote sensing. Remote Sens. Rev., 19, 9–20.Google Scholar
  95. Snyder, W.C. (2002). Definition and invariance properties of structured surface BRDF. IEEE Trans. Geoscience Rem. Sensing, 40, 1032–1037.Google Scholar
  96. Welch, R. and W. Zdunkowski (1981). The radiative characteristics of noninteracting cumulus cloud fields, Part I — Parameterization for finite clouds. Contrib. Atmos. Phys., 54, 258–272.Google Scholar
  97. Welch, R. and W. Zdunkowski (1981). The radiative characteristics of noninteracting cumulus cloud fields, Part II — Calculations for cloud fields. Contrib. Atmos. Phys., 54, 273–285.Google Scholar
  98. Harshvardhan and J. Weinman (1982). Infrared radiative transfer through a regular array of cuboidal clouds. J. Atmos. Sci., 39, 431–439.Google Scholar
  99. Harshvardhan and R. Thomas (1984). Solar reflection from interacting and shadowing cloud elements. J. Geophys. Res., 89, 7179–7185.CrossRefGoogle Scholar
  100. Welch, R.M. and B.A. Wielicki (1984). Stratocumulus cloud field reflected fluxes: The effect of cloud shape. J. Atmos. Sci., 41, 3085–3103Google Scholar
  101. Preisendorfer, R.W. and G.L. Stephens (1984). Multimode radiative transfer in finite optical media, I: Fundamentals. J. Atmos. Sci., 41, 709–724.Google Scholar
  102. Stephens, G.L. and R.W. Preisendorfer (1984). Multimode radiative transfer in finite optical media, II: Solutions. J. Atmos. Sci., 41, 725–735.Google Scholar
  103. Joseph, J. and V. Kagan (1988). The reflection of solar radiation from bar cloud arrays. J. Geophys. Res., 93, 2405–2416.Google Scholar
  104. Stephens, G.L. (1985). Reply (to Harshvardan and Randall). Mon. Wea. Rev., 113, 1834–1835.Google Scholar
  105. Stephens, G.L., P.M. Gabriel and S.-C. Tsay (1991). Statistical radiative transport in one-dimensional media and its application to the terrestrial atmosphere. Transp. Theory and Statis. Phys., 20, 139–175.Google Scholar
  106. Cahalan, R.F., W. Ridgway, W.J. Wiscombe, T.L. Bell and J.B. Snider (1994). The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 2434–2455.Google Scholar
  107. Barker, H.W. (1996). A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds — Part 1, Methodology and homogeneous biases. J. Atmos. Sci., 53, 2289–2303.Google Scholar
  108. Barker, H.W., B.A. Wielicki and L. Parker (1996). A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds — Part 2, Validation using satellite data. J. Atmos. Sci., 53, 2304–2316.Google Scholar
  109. Oreopoulos, L. and H.W. Barker (1999). Accounting for subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125, 301–330.Google Scholar
  110. Cahalan, R.F., W. Ridgway, W.J. Wiscombe, S. Gollmer and Harshvardhan (1994). Independent pixel and Monte Carlo estimates of stratocumulus albedo. J. Atmos. Sci., 51, 3776–3790.Google Scholar
  111. Marshak, A., A. Davis, W.J. Wiscombe and G. Titov (1995). The verisimilitude of the independent pixel approximation used in cloud remote sensing. Remote Sens. Environ., 52, 72–78.Google Scholar
  112. Marshak, A., A. Davis, W.J. Wiscombe and R.F. Cahalan (1995). Radiative smoothing in fractal clouds. J. Geophys. Res., 100, 26,247–26,261.Google Scholar
  113. Chambers, L., B. Wielicki and K.F. Evans (1997). On the accuracy of the independent pixel approximation for satellite estimates of oceanic boundary layer cloud optical depth. J. Geophys. Res., 102, 1779–1794.Google Scholar
  114. Davis, A., A. Marshak, R.F. Cahalan and W.J. Wiscombe (1997). The Landsat scalebreak in stratocumulus as a three-dimensional radiative transfer effect, Implications for cloud remote sensing. J. Atmos. Sci., 54, 241–260.Google Scholar
  115. Titov, G.A. (1998). Radiative horizontal transport and absorption in stratocumulus clouds. J. Atmos. Sci., 55, 2549–2560.Google Scholar
  116. Davis, A.B. and A. Marshak (2001). Multiple scattering in clouds, Insights from three-dimensional diffusion/P1 theory. Nucl. Sci. Eng., 137, 251–288.Google Scholar
  117. Savigny, C. von, A.B. Davis, O. Funk and K. Pfeilsticker (2002). Time-series of zenith radiance and surface flux under cloudy skies: Radiative smoothing, optical thickness retrievals and large-scale stationarity. Geophys. Res. Lett., 29, 1825–1828.Google Scholar
  118. Gabriel, P.M. and K.F. Evans (1996). Simple radiative-transfer methods for calculating domain-averaged solar fluxes in inhomogeneous clouds. J. Atmos. Sci., 53, 858–877.Google Scholar
  119. Marshak, A., A. Davis, R.F. Cahalan and W.J. Wiscombe (1998). Nonlocal independent pixel approximation: Direct and inverse problems. IEEE Trans. Geosc. and Remote Sens., 36, 192–205.Google Scholar
  120. Faure, T., H. Isaka and B. Guillemet (2001). Neural network analysis of the radiative interaction between neighboring pixels in inhomogeneous clouds. J. Geophys. Res., 106, 14465–14484.Google Scholar
  121. Polonsky, I.N., M.A. Box and A.B. Davis (2003). Radiative transfer through inhomogeneous turbid media: Implementation of the adjoint perturbation approach at the first-order. J. Quant. Spectrosc. Radiat. Transfer, 78, 85–98.Google Scholar
  122. Cornet, C., H. Isaka, B. Guillemet and F. Szczap (2004). Neural network retrieval of cloud parameters of inhomogeneous clouds from multispectral and multiscale radiance data: Feasibility study. J. Geophys. Res., 109, D12203, doi:10.1029/2003JD004186.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A.B. Davis
  • Y. Knyazikhin

There are no affiliations available

Personalised recommendations