Structural and Functional Modulation of Ion Channels by Specific Lipids: from Model Systems to Cell Membranes

  • Asia M. Fernández
  • José A. Poveda
  • José A. Encinar
  • Andrés Morales
  • José M. González-Ros
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 9)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akabas MH, Kaufmann C, Archdeacon P, Karlin A (1994) Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit. Neuron 13:919–927CrossRefGoogle Scholar
  2. Aleu J, Ivorra I, Lejarreta M, González-Ros JM, Morales A, Ferragut JA (1997) Functional incorporation of P-glycoprotein into Xenopus oocyte plasma membrane fails to elicit a swelling-evoked conductance. Biochem Biophys Res Com 237:407–412Google Scholar
  3. Andreasen TJ, McNamee MG (1980) Inhibition of ion permeability control properties of acetylcholine receptor from Torpedo californica by long-chain fatty acids. Biochemistry 19:4719–4726CrossRefGoogle Scholar
  4. Antollini SS, Soto MA, Bonini de Romanelli I, Gutierrez-Merino C, Sotomayor P, Barrantes FJ (1996) Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Biophys J 70(3):1275–84Google Scholar
  5. Anzai K, Takano C, Tanaka K, Kirino Y (1994) Asymmetrical lipid charge changes the subconducting state of the potassium channel from sarcoplasmic reticulum. Biochem Biophys Res Com 199:1081–1087Google Scholar
  6. Arias HR (1998) Noncompetitive inhibition of nicotinic acetylcholine receptors by endogenous molecules. J Neurosci Res 52:369–379CrossRefGoogle Scholar
  7. Arshava B, Taran I, Xie H, Becker JM, Naider F (2002) High resolution NMR analysis of the seven transmembrane domains of a heptahelical receptor in organic-aqueous medium. Biopolymers 64:161–76CrossRefGoogle Scholar
  8. Baenziger JE, Chew JP (1997) Desensitization of the nicotinic acetylcholine receptor mainly involves a structural change in solvent-accessible regions of the polypeptide backbone. Biochemistry 36:3617–3624CrossRefGoogle Scholar
  9. Baenziger JE, Darsaut TE, Morris ML (1999) Internal dynamics of the nicotinic acetylcholine receptor in reconstituted membranes. Biochemistry 38:4905–11CrossRefGoogle Scholar
  10. Baezinger JE, Morris ML, Darsaut TE (2000) Effect of membrane lipid composition on the conformational equilibria of the nicotinic acetylcholine receptor. J Biol Chem 275:777–784Google Scholar
  11. Barrantes FJ (1993) The lipid annulus of the nicotinic acetylcholine receptor as a locus of structural-functional interactions. In: Walts A (ed) Protein-lipid interactions. Elsevier, Amsterdam, pp 231–256Google Scholar
  12. Barrantes FJ (2003) Modulation of nicotinic acetylcholine receptor function through the outer and middle rings of transmembrane domains. Curr Opin Drug Discov Develop 6:620–632Google Scholar
  13. Barrantes FJ, Antollini SS, Blanton MP, Prieto M (2000) Topography of nicotinic acetylcholine receptor membrane-embedded domains. J Biol Chem 275:37333–37339CrossRefGoogle Scholar
  14. Bhushan A, McNamee MG (1993) Correlation of phospholipid structure with functional effects on the nicotinic acetylcholine receptor. A modulatory role for phosphatidic acid. Biophys J 64:716–723Google Scholar
  15. Billah MM, Anthes JC (1990) The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J 269:281–291Google Scholar
  16. Blanton MP, Wang HH (1991) Localization of regions of the Torpedo californica nicotinic acetylcholine receptor labeled with an aryl azide derivative of phosphatidylserine. Biochim Biophys Acta 5:1067:1–8Google Scholar
  17. Blanton MP, Cohen JB (1994) Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry 33:2859–2872CrossRefGoogle Scholar
  18. Blanton MP, McCardy EA, Huggins A, Parikh D (1998) Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes [125I]TID-BE and [125I]TIDPC/16. Biochemistry 37:14545–4555CrossRefGoogle Scholar
  19. Blanton MP, Cohen JB (1992) Mapping the lipid-exposed regions in the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 31:3738–3750Google Scholar
  20. Blanton MP, Wang HH (1990) Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine Biochemistry 29:1186–1194CrossRefGoogle Scholar
  21. Bouzat C, Barrantes FJ (1996) Modulation of muscle nicotinic aceylcholine receptors by the glucocorticoid hydrocortisone: possible allosteric mechanism of channel blockade. J Biol Chem 271:25835–25841Google Scholar
  22. Bouzat C, Roccamo AM, Garbus I, Barrantes FJ (1998) Mutations at lipid-exposed residues of the acetylcholine receptor affect its gating kinetics. Molec Pharmacol 54:146–153Google Scholar
  23. Brown DA, London E (1997) Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun 240:1–7CrossRefGoogle Scholar
  24. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Ann Rev Cell Dev Biol 14:111–136Google Scholar
  25. Brown DA, London E (2000) Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224Google Scholar
  26. Bruses JL, Chauvet N, Rutishauser U (2001) Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci 21:504–512Google Scholar
  27. Buller AL, White M (1990) Altered patterns of N-linked glycosylation of the Torpedo acetylcholine receptor expressed in Xenopus oocytes. J Membrane Biol 115:179–189CrossRefGoogle Scholar
  28. Butler DH, McNamee MG (1993) FTIR analysis of nicotinic acetylcholine receptor secondary structure in reconstituted membranes. Biochim Biophys Acta 1150:17–24Google Scholar
  29. Caldironi HA, ALonso TS (1996) Lipidic characterization of full-grown amphibian oocytes and their plasma membrane-enriched fractions. Lipids 31:651–656Google Scholar
  30. Canti C, Bodas E, Marsal J, Solsona C (1998) Tacrine and physostigmine block nicotinic receptors in Xenopus oocytes injected with Torpedo electroplaque membranes. Eur J Pharmacol 363:197–202Google Scholar
  31. Cantor, RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem 101:1323–1325Google Scholar
  32. Castresana J, Fernandez-Ballester G, Fernandez AM, Laynez JL, Arrondo JL, Ferragut JA, JM Gonzalez-Ros (1992) Protein structural effects of agonist binding to the nicotinic acetylcholine receptor. FEBS Lett 314:171–175CrossRefGoogle Scholar
  33. Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226CrossRefADSGoogle Scholar
  34. Changeux JP (1990) The nicotinic acetylcholine receptor: an allosteric protein prototype of ligand-gated ion channels. Trends Pharmacol Sci 11:485–492CrossRefGoogle Scholar
  35. Chiara DC, Dangott LJ, Eckenhoff RG, Cohen JB (2003) Idendtification of nicotinic aceylcholine receptor amino acids photolabeled by the volatile anesthetic halothane. Biochemistry 42:13457–13467Google Scholar
  36. Corbin J, Methot N, Wang HH, Baenziger JE, Blanton MP (1998) Secondary structure analysis of individual transmembrane segments of the nicotinic acetylcholine receptor by circular dichroism and Fourier transform infrared spectroscopy. J Biol Chem 273:771–7CrossRefGoogle Scholar
  37. Corbin J, Wang HH, Blanton MP (1998) Identifying the cholesterol binding domain in the nicotinic acetylcholine receptor with [125I]azido-cholesterol. Biochim Biophys Acta 1414:65–74Google Scholar
  38. Cordes FS, Bright JN, Sansom MS (2002) Proline-induced distortions of transmembrane helices. J Mol Biol 323:951–960CrossRefGoogle Scholar
  39. Criado, M, Eib H, Barrantes FJ (1984) Functional properties of the acetylcholine receptor incorporated in model lipid membranes Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation. J Biol Chem 259:9188–9198Google Scholar
  40. Cruz-Martin A, Mercado JL, Rojas LV, McNamee MG, Lasalde-Dominicci JA (2001) Tryptophan substitutions at lipid-exposed positions of the gamma M3 transmembrane domain increase the macroscopic ionic current response of the Torpedo californica nicotinic acetylcholine receptor. J Membr Biol 183:61–70Google Scholar
  41. Curtis L, Buisson B, Bertrand S, Bertrand D (2002) Potentiation of human 4 2 neuronal nicotinic acetylcholine receptor by estradiol. Molec Pharmacol 61:127–135Google Scholar
  42. daCosta CJ, Ogrel AA, McCardy EA, Blanton MP, Baenziger JE (2002) Lipid-protein interactions at the nicotinic acetylcholine receptor A functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers. J Biol Chem 277:201–208Google Scholar
  43. daCosta CJ, Wagg ID, McKay ME, Baenziger JE (2004) Phosphatidic acid and phosphatidylserine have distinct structural and functional interactions with the nicotinic acetylcholine receptor. J Biol Chem 279:14967–14974CrossRefGoogle Scholar
  44. de Kruijff B (1997) Lipid polymorphism and biomembrane function. Curr Opin Chem Biol 1:564–9CrossRefGoogle Scholar
  45. de Planque MR, Bonev BB, Demmers JA, Greathouse DV, Koeppe RE 2nd, Separovic F, Watts A, Killian JA (2003) Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions. Biochemistry 42:5341–5348Google Scholar
  46. de Planque MR, Goormaghtigh E, Greathouse DV, Koeppe RE 2nd, Kruijtzer JA, Liskamp RM, de Kruijff B, Killian JA (2001) Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobic mismatch with a lipid bilayer: effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry 40:5000–5010Google Scholar
  47. Denisov G, Wanaski S, Luan P, Glaser M, McLaughlin S (1998) Binding of basic peptides to membranes produces lateral domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol 4,5-bisphosphate: an electrostatic model and experimental results. Biophys J 74:731–744Google Scholar
  48. Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66:199–232CrossRefGoogle Scholar
  49. Doyle DA (2004) Structural changes during ion channel gating. Trends Neurosci (6):298–302Google Scholar
  50. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77CrossRefADSGoogle Scholar
  51. Dreger M, Krauss M, Herrmann A, Hucho F (1997) Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes. Biochemistry 36:839–847CrossRefGoogle Scholar
  52. East JM, Melville D, Lee AG (1985) Exchange rates and numbers of annular lipids for the calcium and magnesium ion dependent adenosinetriphosphatase. Biochemistry 24:2615–2623CrossRefGoogle Scholar
  53. Ellena JF, Blazing MA, McNamee MG (1983) Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor. Biochemistry 22:5523–3555CrossRefGoogle Scholar
  54. Esmann M, Marsh D (1985) Spin-label studies on the origin of the specificity of lipid-protein interactions in Na+,K+-ATPase membranes from Squalus acanthias. Biochemistry 24:3572–3578Google Scholar
  55. Exton JH (1990) Signalling through phosphatidylcholine breakdown. J Biol Chem 265:1–4Google Scholar
  56. Fernandez AM, Fernandez-Ballester G, Ferragut JA, Gonzalez-Ros JM (1993) Labeling of the nicotinic acetylcholine receptor by a photoactivatable steroid probe: effects of cholesterol and cholinergic ligands. Biochim Biophys Acta 1149:135–144Google Scholar
  57. Fernandez-Ballester G, Castresana J, Fernandez AM, Arrondo JL, Ferragut JA, Gonzalez-Ros JM (1994) A role for cholesterol as a structural effector of the nicotinic acetylcholine receptor. Biochemistry 33:4065–4071CrossRefGoogle Scholar
  58. Finer-Moore J, Strooud RM (1984) Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc Natl Acad Sci USA 81:155–9ADSGoogle Scholar
  59. Fong TM, McNamee MG (1986) Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25:830–40CrossRefGoogle Scholar
  60. Fong TM, McNamee MG (1987) Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes. Biochemistry 26:3871–80Google Scholar
  61. Forman SA (1999) A hydrophobic photolabel inhibits nicotinic acetylcholine receptors via open-channel block following a slow step. Biochemistry 38:14559–14564CrossRefMathSciNetGoogle Scholar
  62. Galzi JL, Edelstein SJ, Changeux JP (1996) The multiple phenotypes of allosteric receptor mutants. Proc Natl Acad Sci USA 93:1853–1858CrossRefADSGoogle Scholar
  63. Garbus I, Bouzat C, Barrantes FJ (2001) Steroids differentially inhibit the nicotinic aceylcholine receptor. Neuro Report 12:227–231Google Scholar
  64. Garidel P, Johann C, Blume A (1997) Nonideal mixing and phase separation in phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH. Biophys J 72:2196–2210Google Scholar
  65. Gentry CL, Lukas R (2001) Local anesthetics noncompetitively inhibit function of four distinct nicotinic acetylcholine receptor subtypes. J Pharmacol Exp Ther 299:1038–1048Google Scholar
  66. Gonzalez-Ros JM, Llanillo M, Paraschos A, Martinez-Carrion M (1982) Lipid environment of acetylcholine receptor from Torpedo californica. Biochemistry 21:3467–74CrossRefGoogle Scholar
  67. Gonzalez-Ros JM, Paraschos A, Martinez-Carrion M (1980) Reconstitution of functional membrane-bound acetylcholine receptor from isolated Torpedo californica receptor protein and electroplax lipids. Proc Natl Acad Sci USA 198077:1796–1800ADSGoogle Scholar
  68. Guzman GR, Santiago J, Ricardo A, Marti-Arbona R, Rojas LV, Lasalde-Dominicci JA (2003) Tryptophan scanning mutagenesis in the alphaM3 transmembrane domain of the Torpedo californica acetylcholine receptor: functional and structural implications. Biochemistry 42:12243–50CrossRefGoogle Scholar
  69. Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942CrossRefGoogle Scholar
  70. Harder T, Simons K (1997) Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol 9:534–542CrossRefGoogle Scholar
  71. Heginbotham L, Kolmakova-Partensky L, Miller C (1998) Functional reconstitution of a prokaryotic K+ channel. J Gen Physiol 111:741–749CrossRefGoogle Scholar
  72. Hogg RC, Raggenbass M, Bertand D (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1–46Google Scholar
  73. Hol WG, van Duijnen PT, Berendsen HJ (1978) The alpha-helix dipole and the properties of proteins. Nature 273:443–446CrossRefADSGoogle Scholar
  74. Hvidt A, Nielsen SO (1966) Hydrogen exchange in proteins. Adv Protein Chem 21:287–386Google Scholar
  75. Ivorra I, Fernandez A, Gal B, Aleu J, Gonzalez-Ros JM, Ferragut JA, Morales A (2002) Protein orientation affects the efficiency of functional protein transplantation into the Xenopus oocyte membrane. J Membrane Biol 185:117–127CrossRefGoogle Scholar
  76. Jones OT, Eubanks JH, Earnest JP, McNamee MG (1988) A minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor. Biochemistry 27:3733–3742Google Scholar
  77. Jones OT, McNamee MG (1988) Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry 27:2364–2374Google Scholar
  78. Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptor. Nat Rev Neurosci 3:102–114CrossRefGoogle Scholar
  79. Karlin A, Cox RN, Dipaola M, Holtzman E, Kao PN, Lobel P, Wang L, Yodh N (1986) Functional domains of the nicotinic acetylcholine receptor. Ann NY Acad Sci 463:53–69ADSGoogle Scholar
  80. Kash TL, Jenkins A, Kelley JC, Trudell JR, Harrison NL (2003) Coupling of agonist binding to channel gating in the GABA(A) receptor. Nature 421:272–5CrossRefADSGoogle Scholar
  81. Katz B, Miledi R (1975) The effect of procaine on the action of acetylcholine at the neuromuscular junction. J Physiol 249:269–284Google Scholar
  82. Ke L, Lukas RJ (1996) Effects of steroid exposure on ligand binding and functional activities of diverse nicotinic acetylcholine receptor subtypes. J Neurochem 67:1100–1112Google Scholar
  83. Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac11 in the closed state. Science 300:1922–1926CrossRefADSGoogle Scholar
  84. Latorre R, Labarca P, Naranjo D (1992) Surface charge effects on ion conduction in ion channels. Methods Enzymol 207:471–501Google Scholar
  85. Le Cahèrec F, Bron P, Verbavatz JM, Garret A, Morel G, Cavalier A, Bonnec G, Thomas D, Gouranton J, Hubert JF (1996) Incorporation of proteins into (Xenopus) oocytes by proteoliposome microinjection: functional characterization of a novel aquaporin. J Cell Sci 109:1285–1295Google Scholar
  86. Lee AG (1998) How lipids interact with an intrinsic membrane protein: the case of the calcium pump. Biochim Biophys Acta 1376:381–90Google Scholar
  87. Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40Google Scholar
  88. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 3:1666:62–87Google Scholar
  89. Liu LP, Deber CM (1997) Anionic phospholipids modulate peptide insertion into membranes. Biochemistry 36(18):5476–5482Google Scholar
  90. Liu Y, Dilger JP, Vidal AM (1994) Effects of alcohols and volatile anaesthetics on the activation of nicotinic acetylcholine receptor channels. Mol Pharmacol 45:1235–1241Google Scholar
  91. Luan P, Yang L, Glaser M (1995) Formation of membrane domains created during the budding of vesicular stomatitis virus. A model for selective lipid and protein sorting in biological membranes. Biochemistry 34:9874–83CrossRefGoogle Scholar
  92. Lugovskoy AA, Maslennikov IV, Utkin YN, Tsetlin VI, Cohen JB, Arseniev AS (1998) Spatial structure of the M3 transmembrane segment of the nicotinic acetylcholine receptor alpha subunit. Eur J Biochem 255:455–461CrossRefGoogle Scholar
  93. Lundbaek JA, Birn P, Hansen AJ, Søgaard R, Nielsen C, Girshman J, Bruno MJ, Tape SE, Egebjerg J, Greathouse DV, Mattice GL, Koeppe II RE, Andersen OS (2004) Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of micelle-forming amphiphiles and cholesterol. J Gen Physiol 121:599–621Google Scholar
  94. MacKinnon R (2003) Potassium channels. FEBS Lett 555:62–65CrossRefGoogle Scholar
  95. Marheineke K, Grunewald S, Christie W, Reilander H (1998) Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Lett 441:49–52CrossRefGoogle Scholar
  96. Marsal J, Tigy G, Miledi R (1995) Incorporation of acetylcholine receptors and Cl-channels in Xenopus oocytes injected with Torpedo electroplaque membranes. Proc Natl Acad Sci USA 92:5224–5228ADSGoogle Scholar
  97. Marsh D, Barrantes FJ (1978) Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata Proc Natl Acad Sci USA 73:4329–4333ADSGoogle Scholar
  98. Marsh D, Horvath LI (1998) Structure, dynamics and composition of the lipid-protein interface perspectives from spin-labelling. Biochim Biophys Acta 1376:267–296Google Scholar
  99. Marsh D, Pali T (2004) The protein-lipid interface: perspectives from magnetic resonance and crystal structures. Biochim Biophys Acta 1666:118–41Google Scholar
  100. Marsh D, Pellkofer R, Hoffmann-Bleihauer P, Sandhoff K (1982) Incorporation of lipids into cellular membranes — a spin-label assay. Anal Biochem 122:206–12CrossRefGoogle Scholar
  101. Marsh D, Watts A, Barrantes FJ (1981) Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo marmorata. Biochim Biophys Acta 645:97–101Google Scholar
  102. Martens JR, Kwak YG, Tamkun MM (1999) Modulation of Kv channel alpha/beta subunit interactions. Trends Cardiovasc Med 8:253–258Google Scholar
  103. Martens JR, Navarro-Polanco R, Coppock EA, Nishiyama A, Parshley L, Grobaski TD, Tamkum MM (2000) Differential targeting of shaker-like potassium channels to lipid rafts. J Biol Chem 275:7443–7446CrossRefGoogle Scholar
  104. Martinac B, Hamill OP (2002) Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness. Proc Natl Acad Sci USA 99:4308–4312CrossRefADSGoogle Scholar
  105. Maxfield FR (2002) Plasma membrana microdomains. Curr Opin Cell Biol 14:483–487CrossRefGoogle Scholar
  106. Methot N, McCarthy MP, Baenziger JE (1994) Secondary structure of the nicotinic acetylcholine receptor: implications for structural models of a ligand-gated ion channel. Biochemistry 33:7709–7717CrossRefGoogle Scholar
  107. Mielke DL, Wallace BA (1988) Secondary structural analyses of the nicotinic acetylcholine receptor as a test of molecular models. J Biol Chem 263(7):3177–3182Google Scholar
  108. Miledi R, Dueñas Z, Martinez-Torres A, Kawas CH, Eusebi F (2004) Microtransplantation of functional receptors and channels from the Alzheimer’s brain to frog oocytes. Proc Natl Acad Sci USA 101:1760–1763CrossRefADSGoogle Scholar
  109. Miledi R, Eusebi F, MartÍnez-Torres A, Palma E, Trettel F (2002) Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes. Proc Natl Acad Sci USA 99:13238–13242CrossRefADSGoogle Scholar
  110. Miledi R, Parker I, Sumikawa K (1989) Transplanting receptors from brains into oocytes. In: Fidia Research Foundation Neuroscience Award Lectures 3, pp 57–90, Raven Press, New YorkGoogle Scholar
  111. Miller AJ, Zhou JJ (2000) Xenopus oocytes as an expression system for plant transporters. Biochim Biophys Acta 1465:343–358Google Scholar
  112. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955CrossRefADSGoogle Scholar
  113. Moore WM, Holliday LA, Puett D, Brady RN (1974) On the conformation of the acetylcholine receptor protein from Torpedo nobiliana. FEBS Lett 45:145–149CrossRefGoogle Scholar
  114. Morales A, Aleu J, Ivorra I, Ferragut JA, González-Ros JM, Miledi R (1995) Incorporation of reconstituted acetylcholine receptors from Torpedo into the Xenopus oocyte membrane. Proc Natl Acad Sci USA 92:8468–8472ADSGoogle Scholar
  115. Neher E, Steinbach H (1978) Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J Physiol 277:153–176Google Scholar
  116. Nurowska E, Ruzzier F (1996) Corticosterone modifies the murine muscle acetylcholine receptor channel kinetics. Neuro Report 8:77–80Google Scholar
  117. Ochoa EL, A Chattopadhyay, MG McNamee (1989) Desensitization of the nicotinic acetylcholine receptor: molecular mechanisms and effect of modulators. Cell Mol Neurobiol 9:141–178CrossRefGoogle Scholar
  118. Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B (2004) Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science 304:265–270CrossRefADSGoogle Scholar
  119. Olivera S, Ivorra I, Morales A (2005) The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane. Br J Pharmacol (in press)Google Scholar
  120. Opekarová M, Tanner W (2003) Specific lipid requirements of membrane proteins — a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610:11–22Google Scholar
  121. Opella SJ, Marassi FM, Gesell JJ, Valente AP, Kim Y, Oblatt-Montal M, Montal M (1999) Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol 4:374–379Google Scholar
  122. Ortiz-Acevedo A, Melendez M, Asseo AM, Biaggi N, Rojas LV, Lasalde-Dominicci JA (2004) Tryptophan scanning mutagenesis of the gammaM4 transmembrane domain of the acetylcholine receptor from Torpedo californica. J Biol Chem 279:42250–42257CrossRefGoogle Scholar
  123. Paas Y, Cartaud J, Recouvreur M, Grailhe R, Dufresne V, Pebay-Peyroula E, Landau EM, Changeux JP (2003) Electron microscopic evidence for nucleation and growth of 3D acetylcholine receptor microcrystals in structured lipid-detergent matrices. Proc Natl Acad Sci USA 100:11309–11314CrossRefADSGoogle Scholar
  124. Palma E, Trettel F, Fucile S, Renzi M, MIledi R, Eusebi F (2003) Microtransplantation of membranes from cultured cells to Xenopus oocytes: A method to study neurotransmitter receptors embedded in native lipids. Proc Natl Acad Sci USA 100:2896–2900CrossRefADSGoogle Scholar
  125. Palsdottir H, Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666:2–18Google Scholar
  126. Paradiso K, Sabey K, Evers AS, Zormski CF, Covey DF, Steinbach JH (2000) Steroid inhibition of rat neuronal nicotinic 4 2 receptors experessed in HEK 293 cells. Mol Pharmacol 58:341–351Google Scholar
  127. Paradiso K, Zhang J, Steinbach JH (2001) The C terminus of the human nicotinic 4 2 receptor forms a binding site required for potentiation by an estrogenic steroid. J Neurosci 21:6561–6568Google Scholar
  128. Pashkov VS, Maslennikov IV, Tchikin LD, Efremov RG, Ivanov VT, Arseniev AS (1999) Spatial structure of the M2 transmembrane segment of the nicotinic acetylcholine receptor alpha-subunit. FEBS Lett 45:117–121Google Scholar
  129. Pebay-Peyroula E, Rosenbusch JP (2001) High-resolution structures and dynamics of membrane protein-lipid complexes: a critique. Curr Opin Struct Biol 11:427–432CrossRefGoogle Scholar
  130. Perozo E, Cortes DM, Somporspisut P, Kloda A, Martinac B (2002) Open channel structure of MscL and gating mechanism of mechanosensitive channels. Nature 418:942–948CrossRefADSGoogle Scholar
  131. Pershina L, Hvidt A (1974) A study by the hydrogen-exchange method of the complex formed between the basic pancreatic trypsin inhibitor and trypsin. Eur J Biochem 48:339–344CrossRefGoogle Scholar
  132. Polozova A, Litman BJ (2000) Cholesterol dependent recruitment of di22:6-PC by a G proteincoupled receptor into lateral domains. Biophys J 79:2632–4263Google Scholar
  133. Poveda JA, Encinar JA, Fernandez AM, Mateo CR, Ferragut JA, Gonzalez-Ros JM (2002) Segregation of phosphatidic acid-rich domains in reconstituted acetylcholine receptor membranes. Biochemistry 41:12253–12262CrossRefGoogle Scholar
  134. Powl AM, East JM, Lee AG (2005) Heterogeneity in the binding of lipid molecules to the surface of a membrane protein: hot spots for anionic lipids on the mechanosensitive channel of large conductance MscL and effects on conformation. Biochemistry 44:5873–5883Google Scholar
  135. Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C, Hussy N, Bertrands S, Ballivet M, Changeux JP (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849CrossRefADSGoogle Scholar
  136. Revah F, Galzi JL, Giraudat J, Haumont PY, Lederer F, Changeux JP (1990) The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of regions MII and for the structure of the ion channel. Proc Natl Acad Sci USA 87:4675–4679ADSGoogle Scholar
  137. Sackmann E (1984) Physical basis for trigger processes and membrane structures. In: Chapman D (ed) Biological membranes, Vol. 5, Academic Press, London, pp 105–143Google Scholar
  138. Sali D, Bycroft M, Fersht AR (1988) Stabilization of protein structure by interaction of alphahelix dipole with a charged side chain. Nature 335:740–743ADSGoogle Scholar
  139. Sanna E, Motzo C, Usala M, Pau D, Cagetti E, Biggio G (1998) Functional changes in rat nigral GABAA receptors induced by degeneration of the striatonigral GABAergic pathway: an electrophysiological study of receptors incorporated into Xenopus oocytes. J Neurochem 70:2539–2544Google Scholar
  140. Sansom MS, Shrivastava IH, Bright JN, Tate J, Capener CE, Biggin PC (2002) Potassium channels: structures, models, simulations. Biochim Biophys Acta 1565(2):294–307Google Scholar
  141. Santiago J, Guzmán GR, Rojas LV, Marti R, Asmar-Rovira GA, Santana LF, McNamee M, Lasalde-Dominicci JA (2001) Probing the effects of membrane cholesterol in the Torpedo californica acetylcholine receptor and the novel lipid-exposed mutation C418W in Xenopus oocytes. J Biol Chem 276:46523–46532Google Scholar
  142. Santiago J, Guzman GR, Torruellas K, Rojas LV, Lasalde-Dominicci JA (2004) Tryptophan scanning mutagenesis in the TM3 domain of the Torpedo californica acetylcholine receptor beta subunit reveals an alpha-helical structure. Biochemistry 43:10064–70CrossRefGoogle Scholar
  143. Schlegel A, Volonte D, Engelman JA, Galbiati F, Mehta P, Zhang XL, Scherer PE, Lisanti MP (1998) Crowded little caves: structure and function of caveolae. Cell Signal 10:457–463CrossRefGoogle Scholar
  144. Shogomori H, Brown DA (2003) Use of detergents to study membrane rafts: the good, the bad, and the ugly. J Biol Chem 384:1259–1263Google Scholar
  145. Simmonds AC, East JM, Jones OT, Rooney EK, McWhirter J, Lee AG (1982) Annular and non-annular binding sites on the (Ca2++Mg2+)-ATPase. Biochim Biophys Acta 693 398–406Google Scholar
  146. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572CrossRefADSGoogle Scholar
  147. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39CrossRefGoogle Scholar
  148. Singer S, Nicolson GL (1972) The fluid mosaic model of cell membranes. Science 172:720–730ADSGoogle Scholar
  149. Sivilotti LG, Mcneil DK, Lewis TM, Nassar MA, Schoepfer R, Colquhoun D (1997) Recombinant nicotinic receptors, expressed in Xenopus oocytes, do not resemble native rat sympathetic ganglion receptors in single-channel behaviour. J Physiol 500:123–138Google Scholar
  150. Soreq H, Seidman S (1992) Xenopus oocyte microinjection: from gene to protein. Meth Enzymol 207:225–265Google Scholar
  151. Starace DM, Bezanilla F (2004) A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427:548–553CrossRefADSGoogle Scholar
  152. Stith BJ, Hall J, Ayres P, Waggoner L, Moore JD, Shaw WA (2000) Quantification of major classes of Xenopus phospholipids by high performance liquid chromatography with evaporative light scattering detection. J Lipid Res 41:1448–1454Google Scholar
  153. Sukharev S, Betanzos M, Chiang CS, Guy HR (2001) The gating mechanism of the large mechanosensitive channel MscL. Nature 409:720–724CrossRefADSGoogle Scholar
  154. Sunshine C, McNamee MG (1992) Lipid modulation of nicotinic acetylcholine receptor function: the role of neutral and negatively charged lipids. Biochim Biophys Acta 1108:240–246Google Scholar
  155. Sunshine C, McNamee MG (1994) Lipid modulation of nicotinic acetylcholine receptor function: the role of membrane lipid composition and fluidity. Biochim Biophys Acta 1191:59–64Google Scholar
  156. Tamamizu S, Guzman GR, Santiago J, Rojas LV, McNamee MG, Lasalde-Dominicci JA (2000) Functional effects of periodic tryptophan substitutions in the alpha M4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 39:4666–73CrossRefGoogle Scholar
  157. Tillman TS, Cascio M (2003) Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys 38:161–190Google Scholar
  158. Toyoshima C, Unwin N (1998) Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature 336:247–250ADSGoogle Scholar
  159. Turnheim K, Gruber J, Cristoph W, Ruiz Gutierrez V (1999) Membrane phospholipids composition affects function of potassium channels from rabit colon epithelium. Am Phys Soc 277:83–90Google Scholar
  160. Unwin N (1993) Nicotinic acetylcholine receptor at 9 Å resolution. J Mol Biol 229:1101–1124CrossRefGoogle Scholar
  161. Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43CrossRefADSGoogle Scholar
  162. Unwin N (2003) Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett 555:91–95CrossRefGoogle Scholar
  163. Valera S, Ballivet M, Bertrand D (1992) Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 89:9949–9953ADSGoogle Scholar
  164. Valiyaveetil FI, Zhou Y, Mackinnon R (2002) Lipids in the structure, folding and function of the KcsA K+ channel. Biochemistry 41:10771–10777CrossRefGoogle Scholar
  165. van den Brink-van der Laan E, Killian JA, de Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666:275–288Google Scholar
  166. Villar MT, Artigues A, Ferragut JA, Gonzalez-Ros JM (1988) Phospholipase A2 hydrolysis of membrane phospholipids causes structural alteration of the nicotinic acetylcholine receptor. Biochim Biophys Acta 938:35–43Google Scholar
  167. Wenz JJ, Barrantes FJ (2005) Nicotinic acetylcholine receptor induces lateral segregation of phosphatidic acid and phosphatidylcholine in reconstituted membranes. Biochemistry 44(1):398–410CrossRefGoogle Scholar
  168. White BH, Cohen JB (1992) Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic non-competitive antagonist. J Biol Chem 267:15770–15783Google Scholar
  169. Williamson IM, Alvis SM, East JM, Lee AG (2002) Interactions of phospholipids with the potassium channel KcsA. Biophys J 83:2026–2038Google Scholar
  170. Williamson PT, Meier BH, Watts A (2004) Structural and functional studies of the nicotinic acetylcholine receptor by solid-state NMR. Eur Biophys J 33(3):247–54CrossRefGoogle Scholar
  171. Wu L, Bauer CS, Zhen XG, Xie C, Yang J (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419:947–952ADSGoogle Scholar
  172. Yager P, Chang EL, Williams RW, Dalziel AW (1984) The secondary structure of acetylcholine receptor reconstituted in a single lipid component as determined by Raman spectroscopy. Biophys J 45:26–28Google Scholar
  173. Zhang H, Karlin A (1997) Identification of acetylcholine receptor channel-lining residues in the M1 segment of the beta-subunit. Biochemistry 36:15856–15864Google Scholar
  174. Zhou Y, Morals-Cabral JH, Kaufman A, Mackinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Asia M. Fernández
    • 1
  • José A. Poveda
    • 1
  • José A. Encinar
    • 1
  • Andrés Morales
    • 2
  • José M. González-Ros
    • 1
  1. 1.Instituto de Biología Molecular y CelularUniversidad Miguel HernándezElche (Alicante)Spain
  2. 2.División de FisiologíaUniversidad AlicanteAlicanteSpain

Personalised recommendations