Anti-theft Protection: Electronic Immobilizers

  • Kerstin Lemke
  • Ahmad-Reza Sadeghi
  • Christian Stüble

Summary

The automotive industry has been developing electronic immobilizers to reduce the number of car thefts since the mid-1990s. However, there is not much information on the current solutions in the public domain, and the annual number of stolen cars still causes a significant loss. This generates other costs particularly regarding the increased insurance fees each individual has to pay.

In this paper we present a system model that captures a variety of security aspects concerning electronic immobilizers. We consider generic security and functional requirements for constructing secure electronic immobilizers. The main practical problems and limitations are addressed and we give some design guidance as well as possible solutions.

Keywords

electronic immobilizer transponder motor control unit RFID mafia attack distance bounding trusted computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    www.secureyourmotor.gov.uk.Google Scholar
  2. 2.
    www.verkehrsunfallforensik.de/pdf/68\_Wegfahrsperren.pdf.Google Scholar
  3. 3.
    Kai Schramm, Kerstin Lemke, Christof Paar. Embedded Cryptography: Side Channel Attacks. This book.Google Scholar
  4. 4.
    Kerstin Lemke. Embedded Security: Physical Protection against Tampering Attacks. This book.Google Scholar
  5. 5.
    Marko Wolf, André Weimerskirch, Christof Paar. Automotive Digital Rights Management Systems. This book.Google Scholar
  6. 6.
    http://news.bbc.co.uk/2/hi/asia-pacific/4396831.stm.Google Scholar
  7. 7.
    Public-domain Biometric Applications — Functionality, Performance and Scalability. www.cesg.gov.uk/site/ast/biometrics/media/perf-and-func-handout.pdf.Google Scholar
  8. 8.
    ISO/IEC 9798-2: Information Technology — Security Techniques — Entity Authentication — Part 2: Mechanisms using symmetric encipherment algorithms. International Organization for Standardization, 1999.Google Scholar
  9. 9.
    Die neue Strategie der Autodiebe. Frankfurter Allgemeine Zeitung, Nr. 40, Seite T1, 2004.Google Scholar
  10. 10.
    Thomas Beth and Yvo Desmedt. Identification Tokens — Or: Solving the Chess Grandmaster Problem. In A.J. Menezes and S.A. Vanstone, editors, Advances in Cryptology — CRYPTO’ 90, volume 537 of Lecture Notes in Computer Science, pages 169–176. International Association for Cryptologic Research, Springer-Verlag, Berlin, Germany, 1991.Google Scholar
  11. 11.
    Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In Burton S. Kaliski Jr., editor, Advances in Cryptology — CRYPTO’ 97, volume 1294 of LNCS, pages 513–525. Springer-Verlag, 1997.Google Scholar
  12. 12.
    Steve Bono, Matthew Green, Adam Stubblefield, Ari Juels, Avi Rubin, and Michael Szydlo. Security Analysis of a Cryptographically-Enabled RFID Device. www.rfidanalysis.org, January 2005.Google Scholar
  13. 13.
    Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establishment. Springer, 2003.Google Scholar
  14. 14.
    Stefan Brands and David Chaum. Distance-Bounding Protocols. In T. Helleseth, editor, Advances in Cryptology — EUROCRYPT’ 93, volume 765 of Lecture Notes in Computer Science, pages 344–359. International Association for Cryptologic Research, Springer-Verlag, Berlin Germany, 1994.Google Scholar
  15. 15.
    Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong Authentication for RFID Systems Using the AES Algorithm. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Systems — CHES 2004, volume 3156 of LNCS, pages 357–370. Springer-Verlag, 2004.Google Scholar
  16. 16.
    Klaus Finkenzeller. RFID-Handbook. Wiley & Sons LTD, 2003.Google Scholar
  17. 17.
    Trusted Computing Group. TPM main specification. www.trustedcomputinggroup.org, Nov 2003. Version 1.2.Google Scholar
  18. 18.
    Ulrich Kaiser. Theft Protection by means of Embedded Encryption in RFID Transponders (Immobilizer). ESCAR conference, Cologne, Germany, November 2003.Google Scholar
  19. 19.
    John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side Channel Cryptanalysis of Product Ciphers. Journal of Computer Security, 8(2/3):141–158, 2000.Google Scholar
  20. 20.
    Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In M. Wiener, editor, Advances in Cryptology — CRYPTO’ 99, volume 1666 of LNCS, pages 388–397. Springer-Verlag, 1999.Google Scholar
  21. 21.
    Kerstin Lemke, Ahmad-Reza Sadeghi, and Christian Stüble. An Open Approach for Designing Secure Electronic Immobilizers. In Robert H. Deng, Feng Bao, HweeHwa Pang, and Jianying Zhou, editors, ISPEC, volume 3439 of Lecture Notes in Computer Science, pages 230–242. Springer, 2005.Google Scholar
  22. 22.
    Frank Stajano and Ross Anderson. The Resurrecting Duckling: Security Issues for Ad-hoc Wireless Networks. In Security Protocols-7th International Workshop, volume 1796 of Lecture Notes in Computer Science, pages 172–194, Cambridge, United Kingdom, 2000. Springer-Verlag, Berlin Germany.Google Scholar
  23. 23.
    W. Thönnes and S. Kruse. Electronical driving authority — how safe is safe?. VDI Berichte Nr. 1789, 2003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kerstin Lemke
  • Ahmad-Reza Sadeghi
    • 1
  • Christian Stüble
    • 1
  1. 1.Horst Görtz Institute for IT SecurityRuhr University BochumBochumGermany

Personalised recommendations