Growth, Differentiation and Sexuality pp 293-323

Part of the The Mycota book series (MYCOTA, volume 1)

Mating-Type Structure, Evolution, and Function in Euascomycetes

  • R. Debuchy
  • B. G. Turgeon

VI. Conclusion

The past several years have seen a rapid rise in the number of cloned and characterized mating-type loci from an ever-expanding group of filamentous Ascomycetes. However, the available mating-type gene database still lacks some representatives of functionally or taxonomically important groups. No complete mating-type sequences are available for the Euascomycetes that undergo mating-type switching, or for lichen-forming fungi. The analysis of the evolution of mating types is at the beginning, focusing first on the evolutionary relationship between self-compatible and self-incompatible species from the same genus. A comparative evolutionary history of the mating-type loci of organisms with more distant connections, such as those of Candida albicans, N. crassa, and Cryptococcus neoformans, will require much effort to be understood. Finally, investigations into the role of mating-type proteins during development of the fruiting body must be scaled up. The major challenge in the mating-type field is to identify the target genes of the mating-type transcription factors, and to determine the function of these target genes, as well as the function of the MAT1-1-2 and MAT1-1-4 proteins themselves. Until recently, this topic was limited due to intractable difficulties with genetical approaches, or tedious and uncertain molecular methods for finding target genes. Now, entire genomes are available for all model systems, and microarrays have been made or are under construction for most of them. Whole-genome methods will accelerate the discovery of target genes, provided that microarray strategies include careful selection of the mutants to be profiled, to avoid including candidate genes not related to mating-type function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Arie T, Kaneko I, Yoshida T, Noguchi M, Nomura Y, Yamaguchi I (2000) Mating-type genes from asexual phytopathogenic ascomycetes Fusarium oxysporum and Alternaria alternata. Mol Plant Microbe Interact 13:1330–1339PubMedGoogle Scholar
  3. Arnaise S, Zickler D, Glass NL (1993) Heterologous expression of mating-type genes in filamentous fungi. Proc Natl Acad Sci USA 90:6616–6620PubMedCrossRefGoogle Scholar
  4. Arnaise S, Coppin E, Debuchy R, Zickler D, Picard M (1995) Models for mating type gene functions in Podospora anserina. Fungal Genet Newslett Suppl 42:79Google Scholar
  5. Arnaise S, Debuchy R, Picard M (1997) What is a bona fide mating-type gene? Internuclear complementation of mat mutants in Podospora anserina. Mol Gen Genet 256:169–178PubMedGoogle Scholar
  6. Arnaise S, Zickler D, Le Bilcot S, Poisier C, Debuchy R (2001) Mutations in mating-type genes of the heterothallic fungus Podospora anserina lead to self-fertility. Genetics 159:545–556PubMedGoogle Scholar
  7. Badgett TC, Staben C (1999) Interaction between and transactivation by mating type polypeptides of Neurospora crassa. Fungal Genet Newslett Suppl 46:73Google Scholar
  8. Barve MP, Arie T, Salimath SS, Muehlbauer FJ, Peever TL (2003) Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph: Didymella rabiei) and a MAT phylogeny of legume-associated Ascochyta spp. Fungal Genet Biol 39:151–167PubMedCrossRefGoogle Scholar
  9. Beatty NP, Smith ML, Glass NL (1994) Molecular characterization of mating-type loci in selected homothallic species of Neurospora, Gelasinospora and Anixiella. Mycol Res 98:1309–1316CrossRefGoogle Scholar
  10. Bennett RS, Yun SH, Lee TY, Turgeon BG, Arseniuk E, Cunfer BM, Bergstrom GC (2003) Identity and conservation of mating type genes in geographically diverse isolates of Phaeosphaeria nodorum. Fungal Genet Biol 40:25–37PubMedCrossRefGoogle Scholar
  11. Bistis GN (1998) Physiological heterothallism and sexuality in Euascomycetes: a partial history. Fungal Genet Biol 23:213–222PubMedCrossRefGoogle Scholar
  12. Bobrowicz P, Pawlak R, Correa A, Bell-Pedersen D, Ebbole DJ (2002) The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol Microbiol 45:795–804PubMedCrossRefGoogle Scholar
  13. Butler G, Kenny C, Fagan A, Kurischko C, Gaillardin C, Wolfe KH (2004) Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc Natl Acad Sci USA 101:1632–1637PubMedCrossRefGoogle Scholar
  14. Casselton LA (2002) Mate recognition in fungi. Heredity 88:142–147PubMedCrossRefGoogle Scholar
  15. Chang S, Staben C (1994) Directed replacement of mt A by mt a-1 effects a mating type switch in Neurospora crassa. Genetics 138:75–81PubMedGoogle Scholar
  16. Cisar CR, TeBeest DO, Spiegel FW (1994) Sequence similarity of mating type idiomorphs: a method which detects similarity among the Sordariaceae fails to detect similar sequences in other filamentous ascomycetes. Mycologia 86:540–546Google Scholar
  17. Coppin E, Debuchy R (2000) Co-expression of the mating-type genes involved in internuclear recognition is lethal in Podospora anserina. Genetics 155:657–669PubMedGoogle Scholar
  18. Coppin E, Arnaise S, Contamine V, Picard M (1993) Deletion of the mating-type sequences in Podospora anserina abolishes mating without affecting vegetative functions and sexual differentiation. Mol Gen Genet 241:409–414PubMedCrossRefGoogle Scholar
  19. Coppin E, Debuchy R, Arnaise S, Picard M (1997) Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 61:411–428PubMedGoogle Scholar
  20. Coppin E, Arnaise S, Bouhouch K, Robellet X, Zickler D, Debuchy R (2005a) Functional study of SMR1, a mating type gene which does not control self/non-self recognition in Podospora anserina. Fungal Genet Newslett Suppl 52:176Google Scholar
  21. Coppin E, de Renty C, Debuchy R (2005b) The function of the coding sequences for the putative pheromone precursors in Podospora anserina is restricted to fertilization. Eukaryot Cell 4:407–420PubMedCrossRefGoogle Scholar
  22. Debuchy R, Arnaise S, Lecellier G (1993) The mat-allele of Podospora anserina contains three regulatory genes required for the development of fertilized female organs. Mol Gen Genet 241:667–673PubMedCrossRefGoogle Scholar
  23. Desjardins AE, Brown DW, Yun SH, Proctor RH, Lee T, Plattner RD, Lu SW, Turgeon BG (2004) Deletion and complementation of the mating type (MAT) locus of the wheat head blight pathogen Gibberella zeae. Appl Environ Microbiol 70:2437–2444PubMedCrossRefGoogle Scholar
  24. Dettman JR, Harbinski FM, Taylor JW (2001) Ascospore morphology is a poor predictor of the phylogenetic relationships of Neurospora and Gelasinospora. Fungal Genet Biol 34:49–61PubMedCrossRefGoogle Scholar
  25. Dyer PS, Paoletti M, Archer DB (2003) Genomics reveals sexual secrets of Aspergillus. Microbiology 149:2301–2303PubMedCrossRefGoogle Scholar
  26. Ferreira AV, An Z, Metzenberg RL, Glass NL (1998) Characterization of mat A-2, mat A-3 and ΔmatA mating-type mutants of Neurospora crassa. Genetics 148:1069–1079PubMedGoogle Scholar
  27. Foster SJ, Fitt BD (2003) Isolation and characterisation of the mating-type (MAT) locus from Rhynchosporium secalis. Curr Genet 44:277–286PubMedCrossRefGoogle Scholar
  28. Fraser JA, Diezmann S, Subaran RL, Allen A, Lengeler KB, Dietrich FS, Heitman J (2004) Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol 2:e384PubMedCrossRefGoogle Scholar
  29. Galagan J (2005) Comparative analysis of filamentous fungi. Fungal Genet Newslett Suppl 52:29Google Scholar
  30. Geiser DM, Timberlake WE, Arnold ML (1996) Loss of meiosis in Aspergillus. Mol Biol Evol 13:809–817PubMedGoogle Scholar
  31. Glass NL, Kuldau GA (1992) Mating type and vegetative incompatibility in filamentous ascomycetes. Annu Rev Phytopathol 30:201–224CrossRefPubMedGoogle Scholar
  32. Glass NL, Lee L (1992) Isolation of Neurospora crassa A mating type mutants by repeat induced point (RIP) mutation. Genetics 132:125–133PubMedGoogle Scholar
  33. Glass NL, Lorimer IAJ (1991) Ascomycete mating types. In: Bennett JW, Lasure LS (eds) More gene manipulations in fungi. Academic Press, New York, pp 193–216Google Scholar
  34. Glass NL, Nelson MA (1994) Mating type genes in Ascomycetes. In: Wessels JGH, Meinhardt F (eds) Growth, differentiation and sexuality. Springer, Berlin Heidelberg New York, pp 295–306Google Scholar
  35. Glass NL, Vollmer SJ, Staben C, Grotelueschen J, Metzenberg RL, Yanofsky C (1988) DNAs of the two mating-type alleles of Neurospora crassa are highly dissimilar. Science 241:570–573PubMedGoogle Scholar
  36. Glass NL, Metzenberg RL, Raju NB (1990) Homothallic Sordariaceae from nature: the absence of strains containing only the a mating type sequence. Exp Mycol 14:274–289CrossRefGoogle Scholar
  37. Goodwin SB (2002) The barley scald pathogen Rhynchosporium secalis is closely related to the discomycetes Tapesia and Pyrenopeziza. Mycol Res 106:645–654CrossRefGoogle Scholar
  38. Hiscock SJ, Kües U (1999) Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. Int Rev Cytol 193:165–295PubMedCrossRefGoogle Scholar
  39. Hoffmann B, Eckert SE, Krappmann S, Braus GH (2001) Sexual diploids of Aspergillus nidulans do not form by random fusion of nuclei in the heterokaryon. Genetics 157:141–147PubMedGoogle Scholar
  40. Inderbitzin P, Harkness J, Turgeon BG, Berbee ML (2005) Lateral transfer of life history strategy in Stemphylium. Proc Natl Acad Sci USA 102:11390–11395PubMedCrossRefGoogle Scholar
  41. Jacobsen S, Pöggeler S (2001) Interaction between mating-type proteins from the homothallic ascomycete Sordaria macrospora. Fungal Genet Newslett Suppl 48:140Google Scholar
  42. Johnson AD (1995) Molecular mechanisms of cell-type determination in budding yeast. Curr Opin Genet Dev 5:552–558PubMedCrossRefGoogle Scholar
  43. Kim H, Borkovich KA (2004) A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol 52:1781–1798PubMedCrossRefGoogle Scholar
  44. Kim H, Metzenberg RL, Nelson MA (2002) Multiple functions of mfa-1, a putative pheromone precursor gene of Neurospora crassa. Eukaryot Cell 1:987–999PubMedCrossRefGoogle Scholar
  45. Kronstad JW, Staben C (1997) Mating type in filamentous fungi. Annu Rev Genet 31:245–276PubMedCrossRefGoogle Scholar
  46. Kurjan J (1993) The pheromone response pathway in Saccharomyces cerevisiae. Annu Rev Genet 27:147–179PubMedGoogle Scholar
  47. Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286:964–967PubMedCrossRefGoogle Scholar
  48. Lee J, Sonnhammer EL (2003) Genomic gene clustering analysis of pathways in eukaryotes. Genome Res 13:875–882PubMedCrossRefGoogle Scholar
  49. Lee J, Lee T, Lee YW, Yun SH, Turgeon BG (2003) Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol Microbiol 50:145–152PubMedCrossRefGoogle Scholar
  50. Leubner-Metzger G, Horwitz BA, Yoder OC, Turgeon BG (1997) Transcripts at the mating type locus of Cochliobolus heterostrophus. Mol Gen Genet 256:661–673PubMedCrossRefGoogle Scholar
  51. Linde CC, Zala M, Ceccarelli S, McDonald BA (2003) Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating-type alleles. Fungal Genet Biol 40:115–125PubMedCrossRefGoogle Scholar
  52. Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci USA 101:4507–4512PubMedCrossRefGoogle Scholar
  53. Metzenberg RL (1990) The role of similarity and difference in fungal mating. Genetics 125:457–462PubMedGoogle Scholar
  54. Metzenberg RL, Glass NL (1990) Mating type and mating strategies in Neurospora. Bioessays 12:53–59PubMedCrossRefGoogle Scholar
  55. Nakai K, Horton P (1999) PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35PubMedCrossRefGoogle Scholar
  56. Nolting N, Pöggeler S (2005) Characterization of transcription factors from the filamentous ascomycete Sordaria macrospora and their implications on fruiting-body development. Fungal Genet Newsletter Suppl 52:184Google Scholar
  57. O’Donnell K, Ward TJ, Geiser DM, Corby Kistler H, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41:600–623PubMedCrossRefGoogle Scholar
  58. Paoletti M, Rydholm C, Schwier EU, Anderson MJ, Szakacs G, Lutzoni F, Debeaupuis JP, Latg JP, Denning DW, Dyer PS (2005) Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol (in press)Google Scholar
  59. Perkins DD (1987) Mating-type switching in filamentous ascomycetes. Genetics 115:215–216PubMedGoogle Scholar
  60. Philley ML, Staben C (1994) Functional analyses of the Neurospora crassa MT a-1 mating type polypeptide. Genetics 137:715–722PubMedGoogle Scholar
  61. Pöggeler S (1999) Phylogenetic relationships between mating-type sequences from homothallic and heterothallic ascomycetes. Curr Genet 36:222–231PubMedCrossRefGoogle Scholar
  62. Pöggeler S (2001) Mating-type genes for classical strain improvements of ascomycetes. Appl Microbiol Biotechnol 56:589–601PubMedCrossRefGoogle Scholar
  63. Pöggeler S (2002) Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Curr Genet 42:153–160PubMedCrossRefGoogle Scholar
  64. Pöggeler S, Kück U (2000) Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs. Mol Gen Genet 263:292–301PubMedCrossRefGoogle Scholar
  65. Pöggeler S, Kück U (2001) Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Gene 280:9–17PubMedCrossRefGoogle Scholar
  66. Pöggeler S, Risch S, Kück U, Osiewacz HD (1997) Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete. Genetics 147:567–580PubMedGoogle Scholar
  67. Randall TA, Metzenberg RL (1995) Species-specific and mating type-specific DNA regions adjacent to mating type idiomorphs in the genus Neurospora. Genetics 141:119–136PubMedGoogle Scholar
  68. Randall TA, Metzenberg RL (1998) The mating type locus of Neurospora crassa: identification of an adjacent gene and characterization of transcripts surrounding the idiomorphs. Mol Gen Genet 259:615–621PubMedCrossRefGoogle Scholar
  69. Reynolds DR, Taylor J (1993) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. Oxford University Press, Wallingford, UKGoogle Scholar
  70. Rydholm C, Paoletti M, Dyer PS, Lutzoni F (2005) Mating system transition in the euascomycete genus Aspergillus subgenus Fumigati section Fumigati. Fungal Genet Newslett Suppl 52Google Scholar
  71. Saupe S, Stenberg L, Shiu KT, Griffiths AJ, Glass NL (1996) The molecular nature of mutations in the mt A-1 gene of the Neurospora crassa A idiomorph and their relation to mating-type function. Mol Gen Genet 250:115–122PubMedGoogle Scholar
  72. Sharon A, Yamaguchi K, Christiansen S, Horwitz BA, Yoder OC, Turgeon BG (1996) An asexual fungus has the potential for sexual development. Mol Gen Genet 251:60–68PubMedCrossRefGoogle Scholar
  73. Shen WC, Bobrowicz P, Ebbole DJ (1999) Isolation of pheromone precursor genes of Magnaporthe grisea. Fungal Genet Biol 27:253–263PubMedCrossRefGoogle Scholar
  74. Shiu PK, Glass NL (2000) Cell and nuclear recognition mechanisms mediated by mating type in filamentous ascomycetes. Curr Opin Microbiol 3:183–188PubMedCrossRefGoogle Scholar
  75. Shiu PK, Metzenberg RL (2002) Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics 161:1483–1495PubMedGoogle Scholar
  76. Shiu PK, Raju NB, Zickler D, Metzenberg RL (2001) Meiotic silencing by unpaired DNA. Cell 107:905–916PubMedCrossRefGoogle Scholar
  77. Singh G, Ashby AM (1998) Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT1-2 locus encoding a putative metallothionein-like protein. Mol Microbiol 30:799–806PubMedCrossRefGoogle Scholar
  78. Singh G, Dyer PS, Ashby AM (1999) Intra-specific and inter-specific conservation of mating-type genes from the discomycete plant-pathogenic fungi Pyrenopeziza brassicae and Tapesia yallundae. Curr Genet 36:290–300PubMedCrossRefGoogle Scholar
  79. Souza CA, Silva CC, Ferreira AV (2003) Sex in fungi: lessons of gene regulation. Genet Mol Res 2:136–147PubMedGoogle Scholar
  80. Turgeon BG (1998) Application of mating type gene technology to problems in fungal biology. Ann Rev Phytopathol 36:115–137CrossRefGoogle Scholar
  81. Turgeon BG, Yoder OC (2000) Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 31:1–5PubMedCrossRefGoogle Scholar
  82. Turgeon BG, Bohlmann H, Ciuffetti LM, Christiansen SK, Yang G, Schafer W, Yoder OC (1993) Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Mol Gen Genet 238:270–284PubMedGoogle Scholar
  83. Turina M, Prodi A, Alfen NK (2003) Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genet Biol 40:242–251PubMedCrossRefGoogle Scholar
  84. Varga J (2003) Mating type gene homologues in Aspergillus fumigatus. Microbiology 149:816–819PubMedCrossRefGoogle Scholar
  85. Waalwijk C, Mendes O, Verstappen EC, de Waard MA, Kema GH (2002) Isolation and characterization of the mating-type idiomorphs from the wheat septoria leaf blotch fungus Mycosphaerella graminicola. Fungal Genet Biol 35:277–286PubMedCrossRefGoogle Scholar
  86. Wirsel S, Turgeon BG, Yoder OC (1996) Deletion of the Cochliobolus heterostrophus mating-type (MAT) locus promotes the function of MAT transgenes. Curr Genet 29:241–249PubMedGoogle Scholar
  87. Wirsel S, Horwitz B, Yamaguchi K, Yoder OC, Turgeon BG (1998) Single mating type-specific genes and their 3′ UTRs control mating and fertility in Cochliobolus heterostrophus. Mol Gen Genet 259:272–281PubMedCrossRefGoogle Scholar
  88. Yabana N, Yamamoto M (1996) Schizosaccharomyces pombe map1+ encodes a MADS-box-family protein required for cell-type-specific gene expression. Mol Cell Biol 16:3420–3428PubMedGoogle Scholar
  89. Yokoyama E, Yamagishi K, Hara A (2003) Structures of the mating-type loci of Cordyceps takaomontana. Appl Environ Microbiol 69:5019–5022PubMedCrossRefGoogle Scholar
  90. Yuan YO, Stroke IL, Fields S (1993) Coupling of cell identity to signal response in yeast: interaction between the α1 and STE12 proteins. Genes Dev 7:1584–1597PubMedGoogle Scholar
  91. Yun SH (1998) Molecular genetics and manipulation of pathogenicity and mating determinants on Mycosphaerella zeae-maydis and Cochliobolus heterostrophus. PhD Thesis, Cornell University, Ithaca, NYGoogle Scholar
  92. Yun SH, Berbee ML, Yoder OC, Turgeon BG (1999) Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc Natl Acad Sci USA 96:5592–5597PubMedCrossRefGoogle Scholar
  93. Yun SH, Arie T, Kaneko I, Yoder OC, Turgeon BG (2000) Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet Biol 31:7–20PubMedCrossRefGoogle Scholar
  94. Zhang L, Churchill AC, Kazmierczak P, Kim DH, van Alfen NK (1993) Hypovirulence-associated traits induced by a mycovirus of Cryphonectria parasitica are mimicked by targeted inactivation of a host gene. Mol Cell Biol 13:7782–7792PubMedGoogle Scholar
  95. Zhang L, Baasiri RA, van Alfen NK (1998) Viral repression of fungal pheromone precursor gene expression. Mol Cell Biol 18:953–959PubMedGoogle Scholar
  96. Zickler D, Arnaise S, Coppin E, Debuchy R, Picard M (1995) Altered mating-type identity in the fungus Podospora anserina leads to selfish nuclei, uniparental progeny, and haploid meiosis. Genetics 140:493–503PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Debuchy
    • 1
  • B. G. Turgeon
    • 2
  1. 1.Institut de Génétique et Microbiologie, UMR CNRS-Universit 8621Université Paris-SudOrsay cedexFrance
  2. 2.Department of Plant PathologyCornell UniversityIthacaUSA

Personalised recommendations