Genetics of phytopathology: Secondary metabolites as virulence determinants of fungal plant pathogens

  • Eckhard Thines
  • Jesús Aguirre
  • Andrew J. Foster
  • Holger B. Deising
Part of the Progress in Botany book series (BOTANY, volume 67)


Secondary Metabolite Virulence Determinant Fusaric Acid Fungal Secondary Metabolite Fungal Genet Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe Y, Suzuki T, Ono C, Iwamoto K, Hosobuchi M, Yoshikawa H (2002) Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol Genet Genomics 267:636–646PubMedCrossRefGoogle Scholar
  2. Agrios GN (1997) Plant pathology, 4th edn. Academic Press., San DiegoGoogle Scholar
  3. Aharonowitz Y, Demain AL (1980) Thoughts on secondary metabolism. Biotechnol Bioeng 22:5–9PubMedGoogle Scholar
  4. Arntzen CJ (1972) Inhibition of photophosphorylation by tentoxin, a cyclic tetrapeptide. Biochim Biophys Acta 283:539–542PubMedGoogle Scholar
  5. Au TK, Leung PC (1998) Identification of the binding and inhibition sites in the calmodulin molecule for ophiobolin A by site-directed mutagenesis. Plant Physiol 118:965–997Google Scholar
  6. Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043PubMedGoogle Scholar
  7. Baidyaroy D, Brosch G, Graessle S, T, Rojer P, Walton JD (2002) Characterization of inhibitor-resistant histone deacetylase activity in plant-pathogenic fungi. Eukaryot Cell 1:538–547PubMedCrossRefGoogle Scholar
  8. Barash I, Mor H, Netzer D, Kashman Y (1981) Production of zinniol by Alternaria dauci and its phytotoxic effect on carrot. Physiol Plant Pathol 19:7–15Google Scholar
  9. Baunsgaard L, Fuglsang AT, Jahn T, Korthout HAAJ, de Boer AH, Palmgren MG (1998) The 14-3-3 proteins associate with the plant plasma membrane H+-ATPase to generate a fusicoccin binding complex and a fusicoccin responsive system. Plant J 13:661–671PubMedCrossRefGoogle Scholar
  10. Bechinger C, Giebel K-F, Schnell M, Leiderer P, Deising HB, Bastmeyer M (1999) Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science 285:1896–1899PubMedCrossRefGoogle Scholar
  11. Bennett JW (1983) In: Bennett JW, Ciegler A (eds) Secondary metabolism and differentiation in fungi. Dekker, New YorkGoogle Scholar
  12. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516PubMedCrossRefGoogle Scholar
  13. Beremand MN (1987) Isolation and characterization of mutants blocked in T-2 toxin biosynthesis. Appl Environ Microbiol 53:1855–1859PubMedGoogle Scholar
  14. Berlepsch KV (1980) Drugs from marine organisms. Naturwiss 67:338–242CrossRefGoogle Scholar
  15. Bilski P, Li MY, Ehrenshaft M, Daub ME, Chignell CF (2000) Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem Photobiol 71:129–134PubMedCrossRefGoogle Scholar
  16. Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH (2004) A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16:2499–2513PubMedGoogle Scholar
  17. Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryotic Cell 3:527–535PubMedCrossRefGoogle Scholar
  18. Bölker M (1998) Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fung Genet Biol 25:143–156Google Scholar
  19. Brosch G, Ransom R, Lechner T, Walton JD, Loidl P (1995) Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum. Plant Cell 7:1941–1950PubMedCrossRefGoogle Scholar
  20. Brosch G, Dangl M, Graessle S, Loidl A, Trojer P, Brandtner EM, Mair K, Walton JD, Baidyaroy D, Loidl P (2001) An inhibitor-resistant histone deacetylase in the plant pathogenic fungus Cochliobolus carbonum. Biochem 40:12855–12863Google Scholar
  21. Brush L, Money NP (1999) Invasive hyphal growth in Wangiella dermatitidis is induced by stab inoculation and shows dependence upon melanin biosynthesis. Fung Genet Biol 28:190–200Google Scholar
  22. Bu’Lock JD (1975) Secondary metabolism in fungi and its relationship to growth and development. In: Smith JE, Berry DR (eds) The filamentous fungi, vol 1, industrial mycology. Edward Arnold Press, London, and Halsted Press, N.Y., USAGoogle Scholar
  23. Bussink HJ, Clark A, Oliver R (2001) The Cladosporium fulvum Bap1 gene: evidence for a novel class of Yap-related transcription factors with ankyrin repeats in phytopathogenic fungi. Eur J Plant Pathol 107:655–659CrossRefGoogle Scholar
  24. Callahan TM, Rose MS, Meade MJ, Ehrenshaft M, Upchurch RG (1999) CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cercosporin production, resistance, and virulence on soybean. Mol Plant Microbe Interact 12:901–910PubMedGoogle Scholar
  25. Carlile MJ, Watkinson SC (1994) The fungi. Academic Press, London, Boston, San DiegoGoogle Scholar
  26. Chung KR, Ehrenshaft M, Daub ME (2002) Functional expression and cellular localization of cercosporin-resistance proteins fused with the GFP in Cercospora nicotianae. Curr Genet 41:159–167PubMedCrossRefGoogle Scholar
  27. Chung KR, Ehrenshaft M, Wetzel DK, Daub ME (2003) Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae. Mol Genet Genom 270:103–113Google Scholar
  28. Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16: 857–873.PubMedCrossRefGoogle Scholar
  29. Cotty PJ, Misaghi IJ (1984) Zinniol production by Alternaria species. Phytopathology 74:785–788CrossRefGoogle Scholar
  30. Cramer RA, Lawrence CB (2003) Cloning of a gene encoding an Alt a 1 isoallergen differentially expressed by the necrotrophic fungus Alternaria brassicicola during Arabidopsis infection. Appl Environ Microbiol 69:2361–2364PubMedCrossRefGoogle Scholar
  31. Curtis MJ, Wolpert TJ (2002) The oat mitochondrial permeability transition and its implication in victorin binding and induced cell death. Plant J 29:295–312PubMedCrossRefGoogle Scholar
  32. Cutler H (1988) Trichothecenes and their role in the expression of plant disease. Biotechnol Crop Protect. ACS Symposium Series 379:50–72Google Scholar
  33. Daub ME, Ehrenshaft M (2000) The photoactivated Cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Annu Rev Phytopathol 38:461–490PubMedCrossRefGoogle Scholar
  34. Daub ME, Li M, Bilski P, Chignell CF (2000) Dihydrocercosporin singlet oxygen production and subcellular localization: a possible defense against cercosporin phototoxicity in Cercospora. Photochem Photobiol 71:135–140PubMedCrossRefGoogle Scholar
  35. Deising HB, Werner S, Wernitz M (2000) The role of fungal appressoria in plant infection. Microbes Infect 2:1631–1641PubMedCrossRefGoogle Scholar
  36. Deising HB, Reimann S, Peil A, Weber WE (2002) Disease management of rusts and powdery mildews. In: Kempken F (ed) The mycota XI. Application in agriculture. Springer, Berlin, pp 243–269Google Scholar
  37. Desjardins AE, Hohn TM, McCormick SP (1992) Effect of gene disruption of trichodiene synthase on the virulence of Gibberella pulicaris. Mol Plant Microbe Interact 5:214–222Google Scholar
  38. Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev 57:595–604PubMedGoogle Scholar
  39. Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, LondonGoogle Scholar
  40. Faulkner DJ (1993) Academic chemistry and the discovery of bioactive marine natural products. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology, vol 1: pharmaceuticals and bioactive natural products. Plenum Press, New YorkGoogle Scholar
  41. Fichtlscherer F, Wellein C, Mittag M, Schweizer E (2000) A novel function of yeast fatty acid synthase. Subunit alpha is capable of self-pantetheinylation. Eur J Biochem 267:2666–2671PubMedCrossRefGoogle Scholar
  42. Flaherty JE, Woloshuk CP (2004) Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFR1. Appl Environ Microbiol 70:2653–2659PubMedCrossRefGoogle Scholar
  43. Gohbara M, Kosuge Y, Yamasaki S, Kimura Y, Suzuki A, Tamura S (1978) Isolation, structures and biological-activities of colletotrichins, phytotoxic substances from Colletotrichum nicotianae. Agric Biol Chem 42:1037–1043Google Scholar
  44. Gokhale RS, Tuteja D (2001) Biochemistry of polyketide synthases. In: Rehm H-J, Reed G (eds) Special processes, vol 10. Wiley-VCH, Weinheim, pp 342–372.Google Scholar
  45. Groth G (2002) Structure of spinach chloroplast F1-ATPase complexed with the phytopathogenic inhibitor tentoxin. Proc Natl Acad Sci USA 99:3464–3468PubMedCrossRefGoogle Scholar
  46. Halestrap A (1982) The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified “Q cycle”. Biochem J 204:49–59PubMedGoogle Scholar
  47. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432Google Scholar
  48. Heiser I, Oßwald W, Elstner EF (1998) The formation of reactive oxygen species by fungal and bacterial phytotoxins. Plant Physiol Biochem 36:703–713CrossRefGoogle Scholar
  49. Heiser I, Sachs E, Liebermann B (2003) Photodynamic oxygen activation by rubellin D, a phytotoxin produced by Ramularia collo-cygni (Sutton et Waller). Physiol Mol Plant Pathol 62:29–36CrossRefGoogle Scholar
  50. Hicks JK, Yu JH, Keller NP, Adams TH (1997) Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J 16:4916–4923PubMedCrossRefGoogle Scholar
  51. Hohn TM, Krishna R, Proctor RH (1999) Characterization of a transcriptional activator controlling trichothecene toxin biosynthesis. Fungal Genet Biol 26:224–235PubMedCrossRefGoogle Scholar
  52. Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substances by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284PubMedGoogle Scholar
  53. Joffe AZ (1986) Fusarium Species: their biology and toxicology. Wiley, New YorkGoogle Scholar
  54. Keszenman-Pereyra D, Lawrence S, Twfieg ME, Price J, Turner G (2003) The npgA/cfwA gene encodes a putative 4′-phosphopantetheinyl transferase which is essential for penicillin biosynthesis in Aspergillus nidulans. Curr Genet 43:186–90PubMedGoogle Scholar
  55. Khosla C, Gokhale RS, Jacobsen JR, Cane DE (1999) Tolerance and specificity of polyketide synthases. Annu Rev Biochem 68:219–253PubMedCrossRefGoogle Scholar
  56. Kogel K-H, Beckhove U, Drescher J, Münch S, Rommé Y (1994) Acquired resistance in barley. The mechanism induced by 2,6-dichloroisonicotinic acid is a phenocopy of a genetically based mechanism governing race-specific powdery mildew resistance. Plant Physiol 106:1269–1277PubMedGoogle Scholar
  57. Kono Y, Daly J (1979) Characterization of the host-specific pathotoxin produced by Helminthosporium maydis, race T, affecting corn with Texas male sterile cytoplasm. Bioorg Chem 8:391–397CrossRefGoogle Scholar
  58. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA 100:15670–15675PubMedCrossRefGoogle Scholar
  59. Kuyama S, Tamura T (1957) Cercosporin. A pigment of Cercospora kikuchii Matsumoto et Tomoyasu. I. Cultivation of fungus, isolation and purification of pigment. J Am Chem Soc 79:5725–5726Google Scholar
  60. Kuykendall LD, Upchurch RG (2004) Expression in sugar beet of the introduced cercosporin toxin export (CFP) gene from Cercospora kikuchii, the causative organism of purple seed stain in soybean. Biotechnol Lett 26:723–727PubMedCrossRefGoogle Scholar
  61. Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158PubMedCrossRefGoogle Scholar
  62. Lee BN, Kroken S, Chou DY, Robbertse B, Yoder OC, Turgeon BG (2005) Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. Eukaryotic Cell 4:545–555PubMedCrossRefGoogle Scholar
  63. Leung PC, Taylor WA, Wang JH, Tipton CL (1985) Role of cal-modulin inhibition in the mode of action of ophiobolin A. Plant Physiol 177:303–308Google Scholar
  64. Leung PC, Graves LM, Tipton CL (1988) Characterization of the interaction of ophiobolin A and calmodulin. Int J Biochem 20:1351–1359PubMedCrossRefGoogle Scholar
  65. Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593PubMedCrossRefGoogle Scholar
  66. Marasas WFO, Nelson PE, Tousson TA (1984) Toxigenic Fusarium species: identity and mycotoxicology. Pennsylvania State University Press, University Park, PennsylvaniaGoogle Scholar
  67. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026PubMedCrossRefGoogle Scholar
  68. McLaughlin CS, Vaughn MH, Campbell JM, Wei CM, Stafford ME (1977) Inhibition of protein synthesis by trichothecenes. In: Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotoxin Publishers, Park Forest, Ill., pp 263–273Google Scholar
  69. Meeley RB, Johal GS, Briggs SP, Walton JD (1992) A biochemical phenotype for a disease resistance gene of maize. Plant Cell 4:71–77PubMedCrossRefGoogle Scholar
  70. Mootz HD, Finking R, Marahiel MA (2001) 4′-Phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. J Biol Chem 276:37289–37298PubMedCrossRefGoogle Scholar
  71. Mootz HD, Schorgendorfer K, Marahiel MA (2002) Functional characterization of 4′-phosphopantetheinyl transferase genes of bacterial and fungal origin by complementation of Saccharomyces cerevisiae lys5. FEMS Microbiol Lett 213:51–57PubMedCrossRefGoogle Scholar
  72. Narain A, Biswal G (1992) Helminthosporium oryzae toxin (ophiobolin) and its involvement with pathogenesis on rice. Int J Trop Plant Dis 10:1–8Google Scholar
  73. Navarre DA, Wolpert TJ (1995) Inhibition of the glycine decarboxylase multienzyme complex by the host-selective toxin victorin. Plant Cell 7:463–471PubMedCrossRefGoogle Scholar
  74. Navarre DA, Wolpert TJ (1999) Victorin induction of an apoptotic/senescence-like response in oats. Plant Cell 11:237–249PubMedCrossRefGoogle Scholar
  75. Nukina M, Sassa T, Ikeda M, Umezawa T, Tasaki H (1981) Pyriculariol, a new phytotoxic metabolite of Pyricularia oryzae. Agric Biol Chem 45:2161–2162Google Scholar
  76. Oberegger H, Eisendle M, Schrettl M, Graessle S, Haas H (2003) 4′-Phosphopantetheinyl transferase-encoding npgA is essential for siderophore biosynthesis in Aspergillus nidulans. Curr Genet 44:211–215PubMedCrossRefGoogle Scholar
  77. O’Hagan D (1992) Biosynthesis of polyketide metabolites. Nat Prod Rep 9:447–479PubMedGoogle Scholar
  78. Okubo A, Yamazak S, K. Fuwa K (1975) Biosynthesis of cercosporin. Agric Biol Chem 39:1173–1175Google Scholar
  79. Pavlova P, Shimabukuro K, Hisabori T, Groth G, Lill H, Bald D (2004) Complete inhibition and partial re-activation of single F1-ATPase molecules by tentoxin: new properties of the re-activated enzyme. J Biol Chem 279:9685–9688PubMedGoogle Scholar
  80. Pedley KF, Walton JD (2001) Regulation of cyclic peptide biosynthesis in a plant pathogenic fungus by a novel transcription factor. Proc Natl Acad Sci USA 98:14174–14179PubMedCrossRefGoogle Scholar
  81. Plattner RD, Tjarks LW, Beremand MN (1989) Trichothecenes accumulated in liquid culture of a mutant of Fusarinum sporotrichioides NRRL 3299. Appl Environ Microbiol 55:2190–2194PubMedGoogle Scholar
  82. Prell HH, Day P (2001) Plant-fungal pathogen interaction—a classical and molecular view. Springer Verlag, BerlinGoogle Scholar
  83. Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberelle zeae caused by disruption of a trichothecene toxin biosynthetic gene. Molec Plant Microbe Interact 8:593–601Google Scholar
  84. Proctor RH, Hohn TM, McCormick SP (1997) Restoration of wild-type virulence to Tri5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation. Microbiology 143:2583–2591PubMedCrossRefGoogle Scholar
  85. Reimann S, Deising HB (2005) Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of natural 4′-hydroxyflavone and potentiation of fungicide activity. Appl Environ Microbiol 71:3269–3275PubMedCrossRefGoogle Scholar
  86. Rollins JA, Ehrenshaft M, Upchurch RG (1993) Effects of light and altered cercosporin phenotypes on gene expression in Cercospora kikuchii. Can J Microbiol 39:118–124CrossRefGoogle Scholar
  87. Rotem J (ed) (1994) The genus Alternaria. Biology, epidemiology, and pathology. APS Press, St Paul, MinnesotaGoogle Scholar
  88. Shim WB, Dunkle LD (2003) CZK3, a MAP kinase kinase kinase homolog in Cercospora zeaemaydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis. Mol Plant Microbe Interact 16:760–768PubMedGoogle Scholar
  89. Shim WB, Woloshuk CP (2001) Regulation of fumonisin B(1) biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. Appl Environ Microbiol 67:1607–1612PubMedCrossRefGoogle Scholar
  90. Siedow JN, Rhoads DM, Ward GC, Levings CS (1995) The relationship between the mitochondrial gene T-urf13 and fungal pathotoxin sensitivity in maize. Biochim Biophys Acta 1271:235–240PubMedGoogle Scholar
  91. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London.Google Scholar
  92. Spikes JD (1989) Photosensitization. In: Smith KC (ed) The science of photobiology, 2nd edn. Plenum Press, New YorkGoogle Scholar
  93. Stoessl A, Unwin CH, Stothers JB (1979) Metabolites of Alternaria-solani. 5. Biosynthesis of altersolanol-A and incorporation of altersolanol-A. A-C-13(X) into altersolanol-B and macrosporin. Tetrahed Lett 27:2481–2484Google Scholar
  94. Sugawara F, Strobel G (1986) Zinniol, a phytotoxin from Phoma macdonaldi. Plant Sci 43:19–23Google Scholar
  95. Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 11:404–412PubMedGoogle Scholar
  96. Tag A, Hicks J, Garifullina G, Ake CJ, Phillips TD, Beremand M, Keller N (2000) G-protein signalling mediates differential production of toxic secondary metabolites. Mol Microbiol 38:658–665PubMedCrossRefGoogle Scholar
  97. Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202PubMedCrossRefGoogle Scholar
  98. Tanaka A, Tsuge T (2000) Structural and functional complexity of the genomic region controlling AK-toxin biosynthesis and pathogenicity in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact 13:975–986PubMedGoogle Scholar
  99. Tertivanidis K, Goudoula C, Vasilikiotis C, Hassiotou E, Perl-Treves R, Tsaftaris A (2004) Superoxide dismutase transgenes in sugarbeets confer resistance to oxidative agents and the fungus C. beticola. Transgen Res 13:225–333Google Scholar
  100. Thines E, Eilbert F, Sterner O, Anke H (1997) Glisoprenin A, an inhibitor of the signal transduction pathway leading to appressorium formation in germinating conidia of Magnaporthe grisea on hydrophobic surfaces. FEMS Microbiol Lett 151:219–224CrossRefGoogle Scholar
  101. Thines E, Anke H, Weber RW (2004) Fungal secondary metabolites as inhibitors of infectionrelated morphogenesis in phytopathogenic fungi. Mycol Res 108:14–25PubMedCrossRefGoogle Scholar
  102. Thuleau P, Graziana A, Rossignol M, Kauss H, Auriol P, Ranjeva R (1988) Binding of the phytotoxin zinniol stimulates the entry of calcium into plant protoplasts. Proc Natl Acad Sci USA 85:5932–5935PubMedGoogle Scholar
  103. Tipton CL, Paulsen PV, Betts RE (1977) Effects of ophiobolin A on ion leakage and hexose uptake by maize roots. Plant Physiol 59:907–910PubMedCrossRefGoogle Scholar
  104. Tsuji G, Kenmochi Y, Takano Y, Sweigard J, Farrall L, Furusawa I, Horino O, Kubo Y (2000) Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol Microbiol 38:940–954PubMedCrossRefGoogle Scholar
  105. Tsuji SY, Cane DE, Khosla C (2001) Selective protein-protein interactions direct channeling of intermediates between polyketide synthase modules. Biochem 40:2326–2331Google Scholar
  106. Turner WB (1971) Fungal metabolites. Academic Press, LondonGoogle Scholar
  107. Turner WB, Aldridge DC (1983) Fungal metabolites, 1st edn. Academic Press, LondonGoogle Scholar
  108. Upchurch RG, Rose MS, Eweida M (2001) Over-expression of the cercosporin facilitator protein, CFP, in Cercospora kikuchii up-regulates production and secretion of cercosporin. FEMS Microbiol Lett 204:89–93PubMedCrossRefGoogle Scholar
  109. Upchurch RG, Walker DC, Rollins JA, Ehrenshaft M, Daub ME (1991) Mutants of Cercospora kikuchii altered in cercosporin synthesis and pathogenicity. Appl Environ Microbiol 57:2940–2945PubMedGoogle Scholar
  110. Ververidis P, Davrazou F, Diallinas G, Georgakopoulos D, Kanellis AK, Panopoulos N (2001) A novel putative reductase (Cpd1p) and the multidrug exporter Snq2p are involved in resistance to cercosporin and other singlet oxygen-generating photosensitizers in Saccharomyces cerevisiae. Curr Genet 39:127–136PubMedGoogle Scholar
  111. Wakulinski W (1989) Phytotoxicity of Fusarium metabolites in relation to pathogenicity. In: Chelkowski J (ed) Fusarium: mycotoxins, taxonomy and pathogenicity. Elsevier, AmsterdamGoogle Scholar
  112. Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733PubMedCrossRefGoogle Scholar
  113. Walton JD, Panaccione DG (1993) Host-selective toxins and disease specificity: Perspectives and progress. Annu Rev Phytopathol 31:275–303CrossRefPubMedGoogle Scholar
  114. Weiergang I, Dunkle LD, Wood KV, Nicholson RL (1996) Morphogenic regulation of pathotoxin synthesis in Cochliobolus carbonum. Fungal Genet Biol 20:74–78PubMedCrossRefGoogle Scholar
  115. Weinberg ED (1974) Secondary metabolism: control by temperature and inorganic phosphate. Dev Ind Microbiol 15:70–81Google Scholar
  116. Wirsel SGR, Reimann S, Deising HB (2004) Genetics of phytopathology: fungal morphogenesis and plant infection. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany. Springer-Verlag, Berlin Heidelberg, pp 147–178Google Scholar
  117. Woloshuk CP, Foutz KR, Brewer JF, Bhatnagar D, Cleveland TE, Payne GA (1994) Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol 60:2408–2414PubMedGoogle Scholar
  118. Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285PubMedCrossRefGoogle Scholar
  119. Yabuta T, Kambe K, Hayashi T (1934) Biochemistry of the bakanae-fungus. I. Fusarinic acid, a new product of the bakanae-fungus. J Agric Chem Soc Jpn 10:1059–1068Google Scholar
  120. Yamazaki S, Ogawa. T (1972) The chemistry and stereochemistry of cercosporin. Agric Biol Chem 36:1707–1718Google Scholar
  121. Yang G, Rose MS, Turgeon BG, Yoder OC (1996) A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell 8:2139–2150PubMedGoogle Scholar
  122. Yao N, Tada Y, Sakamoto M, Nakayashiki H, Park P, Tosa Y, Mayama S (2002) Mitochondrial oxidative burst involved in apoptotic response in oats. Plant J 30:567–579PubMedCrossRefGoogle Scholar
  123. Zähner H, Anke H, Anke T (1983) Evolution of secondary pathways. In: Bennett JW, Ciegler E (eds) Differentiation and secondary metabolism in fungi. Marcel Dekker, New York, pp 153–171Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eckhard Thines
    • 1
  • Jesús Aguirre
    • 2
  • Andrew J. Foster
    • 3
  • Holger B. Deising
    • 4
  1. 1.Fachbereich Biologie, Abteilung BiotechnologieUniversität KaiserslauternKaiserslauternGermany
  2. 2.Instituto de Fisiología Celular-Universidad Nacional Autónoma de MéxicoMéxico, D.F.México
  3. 3.Institute of Biotechnology and Drug ResearchKaiserslauternGermany
  4. 4.Faculty of Agriculture, Phytopathology and Plant ProtectionMartin-Luther-University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations