Advertisement

Mineral systems, hydridic fluids, the Earth’s core, mass extinction events and related phenomena

  • John L. Walshe
  • Bruce Hobbs
  • Alison Ord
  • Klaus Regenauer-Lieb
  • Andy Barmicoat
Conference paper

Abstract

We argue that hydridic fluids from the deep-earth are an important fluid type in mineral systems. The Carboniferous through Triassic interval of Earth history is used to illustrate our hypothesis that flux of hydridic fluid is a causative link between many earth processes such as mass extinction, evolution of ocean chemistry, climate change, anoxia, large-scale volcanism and mineral systems. The Earth’s core is considered the dominant reservoir of hydrogen. An enhanced flux of hydridic fluids mobilizes the mantle and sustains tectonism and metallogenesis over 100s of millions of years.

Keywords

Mineral systems hydridic fluids Earth’s core mass extinction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous—Tertiary extinction. Science 208:1095–1108CrossRefGoogle Scholar
  2. Antonov VE, Belash IT, Degtyareva VF, Ponyatovsky EG Shiryaev VI (1980) Obtaining iron hydride under high hydrogen pressure. Dokl Akad Nauk SSSR 252:1384–1387Google Scholar
  3. Berner RA (2002) Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modelling. PNAS 99:4172–4177CrossRefGoogle Scholar
  4. Coveney, RMJr, Ragan VM, Brannon JC (2000) Temporal benchmarks for modeling Pharnerozoic flow of basinal brines and hydrocarbons in the southern Midcontinent based on radiometrically dated calcite. Geology 28:795–798CrossRefGoogle Scholar
  5. Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Science Reviews 48:217–250CrossRefGoogle Scholar
  6. Hotinski RM, Bice KL, Kump LR, Najjar RG, Arthur MA (2004) Ocean stagnation and end-Permian anoxia. Geology 29:7–10CrossRefGoogle Scholar
  7. Kajiwara Y, Yamakita S, Ishida K, Ishiga H, Imai A (1994) Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian/Triassic boundary supported by the sulphur isotopic record. Palaeogeography Palaeoclimatology Palaeoecology 111: 367–379CrossRefGoogle Scholar
  8. Kendrick MA, Burgess R, Leach D, Pattrick RAD (2002) Hydrothermal fluid origins in Mississippi Valley-Type Ore Deposits: Combine Noble Gas (He, Ar, Kr) and Halogen (Cl, Br I) Analysis of Fluid Inclusions from the Illinois-Kentucky Fluorspar District, Viburnum Trend, and Tri-State Districts, Midcontinent United States. Economic Geology 97:453–469CrossRefGoogle Scholar
  9. Larin VM (1993) Hydridic earth: the new geology of our primordially hydrogen-rich planet. Editor on translation C. Warren Hunt, polar Publishing, CalgaryGoogle Scholar
  10. Lowenstein TK, Timofeeff NM, Brennan ST, Hardie LA, Demicco RV (2001) Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science 294:1086–1088.CrossRefGoogle Scholar
  11. Mackay KM, Mackay RA (1968) Introduction to Modern Inorganic Geochemistry: International Textbook Company Limited, LondonGoogle Scholar
  12. Morgan JP, Reston TJ, Ranero CR (2004) Contemporaneous mass extinctions, continental flood basalts and_‘impact signals’: are mantle plume-induced lithospheric gas explosions the causal link? Earth and Planetary Science-Letters 217:263–284CrossRefGoogle Scholar
  13. Mundil R, Ludwig KR, Metcalfe I, Renne PR (2004) Age and Timing of the Permian Mass Extinctions: U/Pb Dating of Closed-System Zircons. Science 305: 1760–1762CrossRefGoogle Scholar
  14. Newell ND (1967) Revolutions in the history of life. Geological Society America Special Paper 89:63–91Google Scholar
  15. Okuchi T (1997) Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278: 1781–1784CrossRefGoogle Scholar
  16. Pope KO (2002) Impact dust not the cause of the Cretaceous-Tertiary mass extinction. Geology 30: 99–102CrossRefGoogle Scholar
  17. Ramero CR, Sallarès V (2004) Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench. Geology 32:549–552CrossRefGoogle Scholar
  18. Ryskin G (2003) Methane-driven oceanic eruptions and mass extinctions. Geology 31:741–744CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • John L. Walshe
    • 1
  • Bruce Hobbs
    • 1
  • Alison Ord
    • 1
  • Klaus Regenauer-Lieb
    • 1
  • Andy Barmicoat
    • 2
  1. 1.CSIRO Exploration and MiningARRCKensingtonAustralia
  2. 2.Geoscience AustraliaCanberraAustralia

Personalised recommendations