Advertisement

Derivative Based vs. Derivative Free Optimization Methods for Nonlinear Optimum Experimental Design

  • Stefan Körkel
  • Huiqin Qu
  • Gerd Rücker
  • Sebastian Sager

Keywords

Sequential Quadratic Programming Parameter Estimation Problem Sequential Quadratic Programming Algorithm Derivative Free Optimization Nonlinear Constrain Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Bauer et al., Numerical Methods for Initial Value Problems and Derivative Generation for DAE Models with Application to Optimum Experimental Design of Chemical Processes, Scientific Computing in Chemical Engineering II, F. Keil, et al., eds., Springer-Verlag, Heidelberg, 2 (1999), 282–289.Google Scholar
  2. 2.
    H.G. Bock, Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen, 1987, Bonner Mathematische Schriften 183.Google Scholar
  3. 3.
    P.E. Gill, W. Murray and M. A. Saunders, SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization, SIAM J. Opt., 12 (2002), 979–1006.MathSciNetGoogle Scholar
  4. 4.
    S. Körkel, Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen, Universität Heidelberg, 2002, http://www.ub.uni-heidelberg.de/archiv/2980.Google Scholar
  5. 5.
    J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, Comput. J. 8 (1965), 308–313.Google Scholar
  6. 6.
    V.J. Torczon, Multi-Directional Search: A Direct Search Algorithm for Parallel Machines, Houston, TX, USA, vii+85, 1989.Google Scholar
  7. 7.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, 1992.Google Scholar
  8. 8.
    R.T. Morrison and R.N. Boyd, Organic Chemistry, Allyn and Bacon, Inc., 4th ed., 1983.Google Scholar
  9. 9.
    J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, Springer Series in Operations Research, New York, 1999.Google Scholar
  10. 10.
    C. Bischof, A. Carle, P. Khademi and A. Mauer, The ADIFOR 2.0 System for the Automatic Differentiation of Fortran 77 Programs, Center for Research on Parallel Computation, Rice University, Houston, TX, 1994, CRPC-TR94491.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefan Körkel
    • 1
  • Huiqin Qu
    • 2
  • Gerd Rücker
    • 3
  • Sebastian Sager
    • 1
  1. 1.Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergHeidelbergGermany
  2. 2.Intelligent Information Processing LaboratoryFudan UniversityShanghaiChina
  3. 3.Deutsche Börse AGFrankfurt am MainGermany

Personalised recommendations