Advertisement

Model Reduction of Second-Order Systems

  • Younes Chahlaoui
  • Kyle A. Gallivan
  • Antoine Vandendorpe
  • Paul Van Dooren
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 45)

Keywords

Transfer Function Krylov Subspace Interpolation Point Rational Interpolation State Space Realization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ant05]
    Antoulas, A.: Lectures on the Approximation of Large-scale Dynamical Systems. SIAM, Philadelphia, to appear (2005)Google Scholar
  2. [BS04]
    Z. Bai and Y. Su. Dimension reduction of second order dynamical systems via a second-order arnoldi method. Technical Report CSE-2004-1, University of California, Davis, 2004.Google Scholar
  3. [BSGL04]
    Bunse-Gerstner, A., Salimbahrami, B., Grotmaack, R. and Lohmann, B.: Existence and Computation of Second Order Reduced Systems using Krylov Subspace Methods. In: Proceedings of 16th Symp. on the Mathematical Theory of Networks and Systems, Leuven (2004)Google Scholar
  4. [CGV04]
    Chahlaoui, Y., Gallivan, K. and Van Dooren, P.: The H norm calculation for large sparse systems. In: Proceedings of 16th Symp. on the Mathematical Theory of Networks and Systems, Leuven (2004)Google Scholar
  5. [CLVV05]
    Chahlaoui, Y., Lemonnier, D., Vandendorpe, A. and Van Dooren, P.: Second-order balanced truncation. Linear Algebra and its Applications, to appear (2005)Google Scholar
  6. [dVS87]
    de Villemagne, C. and Skelton, R.: Model reductions using a projection formulation. Int. J. Control, 46, 2141–2169 (1987)Google Scholar
  7. [Gri97]
    Grimme, E.: Krylov Projection Methods for Model Reduction. PhD thesis, University of Illinois, Urbana-Champaign, (1997)Google Scholar
  8. [GVV03]
    Gallivan, K., Vandendorpe, A. and Van Dooren, P.: Model Reduction via truncation: an interpolation point of view. Linear Algebra and its Applications, 375, 115–134 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [GVV04a]
    Gallivan, K., Vandendorpe, A. and Van Dooren, P.: Model reduction of MIMO systems via tangential interpolation. SIAM Journal on Matrix Analysis and Applications, 26(2), 328–349 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [GVV04b]
    Gallivan, K., Vandendorpe, A. and Van Dooren, P.: Sylvester equations and projection-based model reduction. Journal of Computational and Applied Mathematics, 162, 213–229 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [MS96]
    Meyer, D. and Srinivasan, S.: Balancing and model reduction for second order form linar systems. IEEE Trans. Automat. Control, 41(11), 1632–1644 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Pre97]
    Preumont, A.: Vibration Control of Active Structures. Kluwer Academic Publishers, Dordrecht (1997)zbMATHGoogle Scholar
  13. [SA02]
    Sorensen, D. and Antoulas, A.: The Sylvester equation and approximate balanced reduction. Linear Algebra and its Applications, 351–352, 671–700 (2002)MathSciNetCrossRefGoogle Scholar
  14. [SC91]
    Su, T. and Craig, J.: Model reduction and control of flexible structures using krylov vectors. J. Guidance Control Dynamics, 14(2), 1311–1313 (1991)CrossRefGoogle Scholar
  15. [VV04]
    Vandendorpe, A. and Van Dooren, P.: Krylov techniques for model reduction of second-order systems. Int. Rept. CESAME TR07-2004, Université catholique de Louvain, Louvain-la-Neuve (2004)Google Scholar
  16. [WJJ87]
    Weaver, W. and Johnston, P.: Structural Dynamics by Finite Elements. Prentice Hall, Upper Saddle River (1987)Google Scholar
  17. [ZDG95]
    Zhou, K., Doyle, J. and Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Younes Chahlaoui
    • 1
  • Kyle A. Gallivan
    • 1
  • Antoine Vandendorpe
    • 2
  • Paul Van Dooren
    • 2
  1. 1.School of Computational ScienceFlorida State UniversityTallahasseeUSA
  2. 2.CESAMEUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations