Radiation Magnetohydrodynamics: Analysis for Model Problems and Efficient 3d-Simulations for the Full System

  • A. Dedner
  • D. Kröner
  • C. Rohde
  • M. Wesenberg

Summary

The equations of compressible radiation magnetohydrodynamics provide a widely accepted mathematical model for the basic fluid-dynamical processes in the sun's atmosphere. From the mathematical point of view the equations constitute an instance of a system of non-local hyperbolic balance laws. We have developed and implemented numerical methods in three space dimensions on the basis of a finite volume scheme that allow the efficient approximation of weak solutions. Key features are the use of efficient Riemann solvers, a special treatment of the divergence constraint, higher-order schemes, the extended short characteristics method, local mesh adaption, and parallelization using dynamic load balancing. Moreover, methods to cope with the special nature of the atmosphere are included.

In this contribution we give an overview of our work, highlight our most important results, and report on some new developments. In particular, we present a scalar model problem for which an almost complete analytical treatment is possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BVS99]
    J.H.M.J. Bruls, P. Vollmöller, and M. Schüssler. Computing radiative heating on unstructured spatial grids. Astron. Astrophys., 348:233, 1999.Google Scholar
  2. [CMIS95]
    P. Caligari, F. Moreno-Insertis, and M. Schüssler. Emerging flux tubes in the solar convection zone. I: Asymmetry, tilt, and emergence latitude. Astrophys. J., 441(2):886–902, 1995.CrossRefGoogle Scholar
  3. [CP98]
    F. Coquel and B. Perthame. Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics. SIAM J. Numer. Anal., 35(6):2223–2249, 1998.MATHMathSciNetCrossRefGoogle Scholar
  4. [Daf00]
    C.M. Dafermos. Hyperbolic conservation laws in continuum physics. Springer-Verlag, New York, first edition, 2000.MATHGoogle Scholar
  5. [Ded03]
    A. Dedner. Solving the system of Radiation Magnetohydrodynamics: for solar physical simulations in 3d. PhD thesis, Albert-Ludwigs-Universität, Mathematische Fakultät, Freiburg, http://www.freidok.uni-freiburg.de/volltexte/1098, 2003.Google Scholar
  6. [DEO92]
    L.J. Durlofsky, B. Engquist, and S. Osher. Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comput. Phys., 98(1):64–73, 1992.MATHCrossRefGoogle Scholar
  7. [DKK+02]
    A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys., 175(2):645–673, 2002.MATHMathSciNetCrossRefGoogle Scholar
  8. [DKRW01a]
    A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg. Godunovtype schemes for the MHD equations. In E.F. Toro, editor, Godunov Methods: Theory and Applications, pages 209–216. Kluwer Academic/Plenum Publishers, November 2001.Google Scholar
  9. [DKRW01b]
    A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg. MHD instabilities arising in solar physics: A numerical approach. In H. Freistühler and G. Warnecke, editors, Hyperbolic Problems: Theory, Numerics, Applications, volume 140 of International Series of Numerical Mathematics, pages 277–286, Basel, 2001. Birkhäuser.Google Scholar
  10. [DKRW03]
    A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg. Efficient divergence cleaning in three-dimensional MHD simulations. In E. Krause and W. Jäger, editors, High Performance Computing in Science and Engineering '02, pages 323–334. Springer, Berlin, 2003.Google Scholar
  11. [DKSW01a]
    A. Dedner, D. Kröner, I.L. Sofronov, and M. Wesenberg. Absorbing boundary conditions for astrophysical MHD simulations. In E.F. Toro, editor, Godunov Methods: Theory and Applications, pages 217–224. Kluwer Academic/Plenum Publishers, November 2001.Google Scholar
  12. [DKSW01b]
    A. Dedner, D. Kröner, I.L. Sofronov, and M. Wesenberg. Transparent boundary conditions for MHD simulations in stratified atmospheres. J. Comput. Phys., 171(2):448–478, 2001.MATHCrossRefGoogle Scholar
  13. [DR]
    A. Dedner and C. Rohde. Existence, uniqueness, and regularity of weak solutions for a model problem in radiative gas dynamics. In preparation.Google Scholar
  14. [DR02]
    A. Dedner and C. Rohde. FV-schemes for a scalar model problem of radiation magnetohydrodynamics. In R. Herbin and D. Kröner, editors, Finite Volumes for Complex Applications III: Problems and Perspectives, pages 179–186, Paris, 2002. Hermès Science Publications.Google Scholar
  15. [DR04]
    A. Dedner and C. Rohde. Numerical approximation of entropy solutions for hyperbolic integro-differential equations. Numer. Math., 97(3), 2004.Google Scholar
  16. [DRSW04]
    A. Dedner, C. Rohde, B. Schupp, and M. Wesenberg. A parallel, load-balanced MHD code on locally adapted, unstructured grids in 3d. Comput. Visual. Sci., 7:79–96, 2004.MATHMathSciNetCrossRefGoogle Scholar
  17. [DRW99]
    A. Dedner, C. Rohde, and M. Wesenberg. A MHD-simulation in solar physics. In R. Vilsmeier, F. Benkhaldoun, and D. Hänel, editors, Finite Volumes for Complex Applications II: Problems and Perspectives, pages 491–498, Paris, 1999. Hermès Science Publications.Google Scholar
  18. [DRW02]
    A. Dedner, C. Rohde, and M. Wesenberg. A note on analysis and numerics for radiative MHD in 3d. PAMM, 2:13–15, 2002.CrossRefGoogle Scholar
  19. [DRW03a]
    A. Dedner, C. Rohde, and M. Wesenberg. Efficient higher-order finite volume scheme for (real gas) magnetohydrodynamics. In T. Hou and E. Tadmor, editors, Hyperbolic Problems: Theory, Numerics, Applications, pages 499–508. Springer, 2003.Google Scholar
  20. [DRW03b]
    A. Dedner, C. Rohde, and M. Wesenberg. A new approach to divergence cleaning in magnetohydrodynamic simulations. In T. Hou and E. Tadmor, editors, Hyperbolic Problems: Theory, Numerics, Applications, pages 509–518. Springer, 2003.Google Scholar
  21. [DV02]
    A. Dedner and P. Vollmöller. An adaptive higher order method for solving the radiation transport equation on unstructured grids. J. Comput. Phys., 178:263–289, 2002.MATHMathSciNetCrossRefGoogle Scholar
  22. [DW95]
    W. Dai and P.R. Woodward. A simple Riemann solver and high-order Godunov schemes for hyperbolic systems of conservation laws. J. Comput. Phys., 121(1):51–65, 1995.MATHMathSciNetCrossRefGoogle Scholar
  23. [DW01]
    A. Dedner and M. Wesenberg. Numerical methods for the real gas MHD equations. In H. Freistühler and G. Warnecke, editors, Hyperbolic Problems: Theory, Numerics, Applications, volume 140 of International Series of Numerical Mathematics, pages 287–296, Basel, 2001. Birkhäuser.Google Scholar
  24. [EMRS91]
    B. Einfeldt, C.D. Munz, P.L. Roe, and B. Sjögreen. On Godunov-type methods near low densities. J. Comput. Phys., 92(2):273–295, 1991.MATHMathSciNetCrossRefGoogle Scholar
  25. [Fif96]
    P. Fife. An integrodifferential analog of semilinear parabolic PDE's. In P. Marcellini et al., editor, Partial differential equations and applications, pages 137–145. Marcel Dekker, 1996.Google Scholar
  26. [FZL98]
    Y. Fan, E.G. Zweibel, and S.R. Lantz. Two-dimensional simulations of buoyantly rising, interacting magnetic flux tubes. Astrophys. J., 493:480–493, 1998.CrossRefGoogle Scholar
  27. [Gra98]
    M. Grassin. Global smooth solutions to Euler equations for a perfect gas. Indiana Univ. Math. J., 47(4):1397–1432, 1998.MATHMathSciNetCrossRefGoogle Scholar
  28. [JP83]
    C. Johnson and J. Pitkäranta. Convergence of a fully discrete scheme for two-dimensional neutron transport. SIAM J.Num.Anal., 20:951–966, 1983.MATHCrossRefGoogle Scholar
  29. [JR03]
    V. Jovanović and C. Rohde. Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws. Preprint 30, Albert-Ludwigs-Universität, Mathematische Fakultät, Freiburg, October 2003. Submitted to SIAM J. Numer. Anal.Google Scholar
  30. [KK]
    G. Karypis and V. Kumar. Metis, a software package for partitioning unstructured graphs, unstructured meshes, and computing fill-reducing orderings of sparse matrices, version 3.0.3. University of Minnesota (1997), http://www-users.cs.umn.edu/∼karypis/metis/index.html.Google Scholar
  31. [KNN98]
    S. Kawashima, Y. Nikkuni, and S. Nishibata. The initial value problem for hyperbolic-elliptic coupled systems and applications to radiation hydrodynamics. In H. Freistühler, editor, Analysis of systems of conservation. Chapman & Hall/CRC, 1998.Google Scholar
  32. [Krö97]
    D. Kröner. Numerical schemes for conservation laws. Wiley, 1997.Google Scholar
  33. [Kru70]
    S.N. Kruzkov. First order quasilinear equations in several independent variables. Math. USSR-Sb., 10:217–243, 1970.CrossRefGoogle Scholar
  34. [Liu77]
    T.-P. Liu. Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations. J. Diff. Equations, 33:92–111, 1977.CrossRefGoogle Scholar
  35. [LR74]
    P. Lesaint and P.A. Raviart. On a finite element method for solving the neutron transport equation. In C. de Boor, editor, Mathematical Aspects of Finite Elements in Partial Differential Equations, pages 89–123, New York, April 1974. Mathematics Research Center University of Wisconsin-Madison, Academic Press.Google Scholar
  36. [MM84]
    D. Mihalas and B. Mihalas. Foundations of radiation hydrodynamics. Oxford University Press, 1984.Google Scholar
  37. [MOS+00]
    C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, and U. Voss. Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys., 161(2):484–511, 2000.MATHMathSciNetCrossRefGoogle Scholar
  38. [Pom73]
    G.C. Pomraning. The equations of radiation hydrodynamics. Pergamon Press, Oxford, 1973.Google Scholar
  39. [Pow94]
    K.G. Powell. An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). ICASE-Report 94-24 (NASA CR-194902), NASA Langley Research Center, Hampton, VA 23681-0001, 8. April 1994.Google Scholar
  40. [Roh98]
    C. Rohde. Entropy solutions for weakly coupled hyperbolic systems in several space dimensions. Z. Angew. Math. Phys., 49:470–499, 1998.MATHMathSciNetCrossRefGoogle Scholar
  41. [Roh03]
    C. Rohde. Scalar conservation laws with mixed local and nonlocal diffusion-dispersion terms. Preprint 18, Albert-Ludwigs-Universität, Mathematische Fakultät, Freiburg, September 2003. Submitted to SIAM J. Appl. Math.Google Scholar
  42. [RY]
    C. Rohde and W.-A. Yong. Global smooth solutions for the system of ideal radiation hydrodynamics. In preparation.Google Scholar
  43. [RZ03]
    C. Rohde and W. Zajączkowski. On the Cauchy problem for the equations of ideal compressible MHD fluids with radiation. Appl. Math., 48(4):257–277, 2003.MathSciNetCrossRefGoogle Scholar
  44. [Sch99]
    B. Schupp. Entwicklung eines effizienten Verfahrens zur Simulation kompressibler Strömungen in 3D auf Parallelrechnern. PhD thesis, Albert-Ludwigs-Universität, Mathematische Fakultät, Freiburg, http://www.freidok.uni-freiburg.de/volltexte/68, 1999.Google Scholar
  45. [Vol02]
    P. Vollmöller. Untersuchung der Wechselwirkung von Magnetfeldkonzentrationen und konvektiven Strömungen mit dem Strahlungsfeld in der Photosphäre der Sonne. PhD thesis, Max-Planck-Institut für Aeronomie / Universität Göttingen, Göttingen, http://webdoc.sub.gwdg.de/diss/2002/vollmoeller/index.html, 2002.Google Scholar
  46. [Wes02]
    M. Wesenberg. Efficient MHD Riemann solvers for simulations on unstructured triangular grids. J. Numer. Math., 10(1):37–71, 2002.MATHMathSciNetGoogle Scholar
  47. [Wes03]
    M. Wesenberg. Efficient Finite Volume Schemes for MHD Simulations in Solar Physics. PhD thesis, Albert-Ludwigs-Universität, Mathematische Fakultät, Freiburg, http://www.freidok.uni-freiburg.de/volltexte/792, 2003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. Dedner
    • 1
  • D. Kröner
    • 1
  • C. Rohde
    • 1
  • M. Wesenberg
    • 2
  1. 1.Mathematisches Institut der Albert-Ludwigs Universität FreiburgFreiburg im Breisgau
  2. 2.Technologiecenter, Methodenentwicklung 3D SimulationBehr GmbH & Co. KGStuttgart

Personalised recommendations