Advertisement

High-resolution Simulation of Detonations with Detailed Chemistry

  • Ralf Deiterding
  • Georg Bader

Summary

Numerical simulations can be the key to the thorough understanding of the multi-dimensional nature of transient detonation waves. But the accurate approximation of realistic detonations is extremely demanding, because a wide range of different scales need to be resolved. This paper describes an entire solution strategy for the Euler equations of thermally perfect gas-mixtures with detailed chemical kinetics that is based on a highly adaptive finite volume method for blockstructured Cartesian meshes. Large-scale simulations of unstable detonation structures of hydrogen-oxygen detonations demonstrate the efficiency of the approach in practice.

Keywords

Euler Equation Detonation Wave Triple Point Riemann Problem Slip Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bell, M. Berger, J. Saltzman, and M. Welcome. Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comp., 15(1):127–138, 1994.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 82:64–84, 1988.CrossRefGoogle Scholar
  3. 3.
    M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 53:484–512, 1984.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Courant and K. O. Friedrichs. Supersonic flow and shock waves. Applied mathematical sciences, volume 21. Springer, New York, Berlin, 1976.Google Scholar
  5. 5.
    R. Deiterding. Parallel adaptive simulation of multi-dimensional detonation structures. PhD thesis, Brandenburgische Technische Universität Cottbus, Sep 2003.Google Scholar
  6. 6.
    R. Deiterding. AMROC-Blockstructured Adaptive Mesh Refinement in Object-oriented C++. Available at http://amroc.sourceforge.net, Mar 2004.Google Scholar
  7. 7.
    Y. N. Denisov and Y. K. Troshin. Structura gazovoi detonatsii v trubakh (Structure of gaseous detonations in tubes). Zh. Eksp. Teor. Fiz., 30(4):450–459, 1960.Google Scholar
  8. 8.
    C. A. Eckett. Numerical and analytical studies of the dynamics of gaseous detonations. PhD thesis, California Institute of Technology, Pasadena, California, Sep 2001.Google Scholar
  9. 9.
    B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjögreen. On Godunov-type methods near low densities. J. Comput. Phys., 92:273–295, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    W. Fickett and W. C. Davis. Detonation. University of California Press, Berkeley and Los Angeles, California, 1979.Google Scholar
  11. 11.
    T. Geßner. Dynamic mesh adaption for supersonic combustion waves modeled with detailed reaction mechanisms. PhD thesis, Math. Fakultät, University Freiburg, 2001.Google Scholar
  12. 12.
    E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws. Springer Verlag, New York, 1996.zbMATHGoogle Scholar
  13. 13.
    B. Grossmann and P. Cinella. Flux-split algorithms for flows with nonequilibrium chemistry and vibrational relaxation. J. Comput. Phys., 88:131–168, 1990.CrossRefGoogle Scholar
  14. 14.
    M. Hanana, M. H. Lefebvre, and P. J. Van Tiggelen. Pressure profiles in detonation cells with rectangular or diagonal structure. In Proc. of 17th Int. Colloquium on the Dynamics of Explosive and Reactive Systems, Heidelberg, Jul 1999.Google Scholar
  15. 15.
    A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49:357–393, 1983.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    X. Y. Hu, B. C. Khoo, D. L. Zhang, and Z. L. Jiang. The cellular structure of a two-dimensional H2/O2/Ar detonation wave. Combustion Theory and Modelling, 8:339–359, 2004.CrossRefGoogle Scholar
  17. 17.
    N. N. Janenko. Die Zwischenschrittmethode zur Lösung mehrdimensionaler Probleme der mathematischen Physik. Springer-Verlag, Berlin, 1969.zbMATHGoogle Scholar
  18. 18.
    P. Kaps and P. Rentrop. Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations. Num. Math., 33:55–68, 1979.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    R. J. Kee, F. M. Rupley, and J. A. Miller. Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. SAND89-8009, Sandia National Laboratories, Livermore, California, Sep 1989.Google Scholar
  20. 20.
    R. J. Kee, F. M. Rupley, and J. A. Miller. The Chemkin thermodynamic data base. SAND87-8215B, Sandia National Laboratories, Livermore, California, Mar 1990.Google Scholar
  21. 21.
    B. Larrouturou. How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys., 95:59–84, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    B. Larrouturou and L. Fezoui. On the equations of multi-component perfect or real gas inviscid flow. In Carasso et al., editor, Proc. of Second Int. Conf. on Nonlinear Hyperbolic Equations-Theory, Numerical Methods, and Applications, Aachen 1988, Lecture Notes in Mathematics 1402, pages 69–98. Springer-Verlag Berlin, 1989.Google Scholar
  23. 23.
    J. H. S. Lee. Dynamic parameters of gaseous detonations. Ann. Rev. Fluid Mech., 16:311–336, 1984.CrossRefGoogle Scholar
  24. 24.
    E. S. Oran, J. W. Weber, E. I. Stefaniw, M. H. Lefebvre, and J. D. Anderson. A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model. J. Combust. Flame, 113:147–163, 1998.CrossRefGoogle Scholar
  25. 25.
    M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid hierarchies. In Proc. of the 29th Annual Hawaii Int. Conf. on System Sciences, Jan 1996.Google Scholar
  26. 26.
    J. J. Quirk. Godunov-type schemes applied to detonation flows. In J. Buckmaster, editor, Combustion in high-speed flows: Proc. Workshop on Combustion, Oct 12–14, 1992, Hampton, pages 575–596, Dordrecht, 1994. Kluwer Acad. Publ.Google Scholar
  27. 27.
    R. Sanders, E. Morano, and M.-C. Druguett. Multidimensional dissipation for upwind schemes: Stability and applications to gas dynamics. J. Comput. Phys., 145:511–537, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Smoller. Shock waves and reaction-diffusion equations. Springer-Verlag, New-York, 1982.zbMATHGoogle Scholar
  29. 29.
    R. A. Strehlow. Gas phase detonations: Recent developments. J. Combust. Flame, 12(2):81–101, 1968.CrossRefGoogle Scholar
  30. 30.
    R. A. Strehlow and F. D. Fernandez. Transverse waves in detonations. J. Combust. Flame, 9:109–119, 1965.CrossRefGoogle Scholar
  31. 31.
    D. R. Stull and H. Prophet. JANAF thermodynamical tables. Technical report, U. S. Departement of Commerce, 1971.Google Scholar
  32. 32.
    E. F. Toro. Riemann solvers and numerical methods for fluid dynamics. Springer-Verlag, Berlin, Heidelberg, 2nd edition, 1999.zbMATHGoogle Scholar
  33. 33.
    N. Tsuboi, S. Katoh, and A. K. Hayashi. Three-dimensional numerical simulation for hydrogen/air detonation: Rectangular and diagonal structures. In Proc. of the Combustion Institute, volume 29, pages 2783–2788, 2003.Google Scholar
  34. 34.
    B. van Leer. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method. J. Comput. Phys., 32:101–136, 1979.CrossRefGoogle Scholar
  35. 35.
    C. K. Westbrook. Chemical kinetics of hydrocarbon oxidation in gaseous detonations. J. Combust. Flame, 46:191–210, 1982.CrossRefGoogle Scholar
  36. 36.
    D. N. Williams, L. Bauwens, and E. S. Oran. Detailed structure and propagation of three-dimensional detonations. In Proc. of the Combustion Institute, pages 2991–2998. 26, 1997.CrossRefGoogle Scholar
  37. 37.
    F. A. Williams. Combustion theory. Addison-Wesley, Reading, Massachusetts, 1985.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ralf Deiterding
    • 1
  • Georg Bader
    • 2
  1. 1.California Institute of TechnologyPasadena
  2. 2.Institut für MathematikTechnische Universität CottbusCottbus

Personalised recommendations