Immunobiology of Human NKG2D and Its Ligands

  • S. González
  • V. Groh
  • T. SpiesEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 298)


The NKG2D-DAP10 receptor complex activates natural killer (NK) cells and costimulates effector T cell subsets upon engagement of ligands that can be conditionally expressed under physiologically harmful conditions such as microbial infections and malignancies. These characteristics have given rise to the widely embraced concept of immunorecognition of “induced or damaged self,” complementing the “missing self” paradigm that is represented by MHC class I allotypes and their interactions with inhibitory receptors on NK cells. However, this notion may only be partially sustainable, as various patterns of constitutive tissue distributions have become apparent among members of one NKG2D ligand family. This review summarizes the biological properties of NKG2D and its ligands and discusses the interactions and regulation of these molecules with emphasis of their significance in microbial infections, tumor immunology, and autoimmune disease.


Celiac Disease NKG2D Ligand Natural Killer Receptor NKG2D Receptor Tumor Immune Evasion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacon L, Eagle RA, Meyer M, Easom N, Young NT, Trowsdale J (2004) Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J Immunol 173:1078–1084PubMedGoogle Scholar
  2. Bahram S, Bresnahan M, Geraghty DE, Spies T (1994) A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci USA 91:6259–6263PubMedGoogle Scholar
  3. Bahram S, Spies T (1996) Nucleotide sequence of a human MHC class I MICB cDNA. Immunogenetics 43:230–233PubMedGoogle Scholar
  4. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729CrossRefPubMedGoogle Scholar
  5. Borges L, Hsu M-L, Fanger N, Kubin M, Cosman D (1997) A family of human lymphoid and myeloid Ig-like receptors, some of which bind to MHC class I molecules. J Immunol 159:5192–5196PubMedGoogle Scholar
  6. Cantoni C, Bottino C, Vitale M, Pessino A, Augugliaro R, Malaspina A, Parolini S, Moretta L, Moretta A, Biassoni R (1999) NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. J Exp Med 189:787–796CrossRefPubMedGoogle Scholar
  7. Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A (2003) Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100:4120–4125CrossRefPubMedGoogle Scholar
  8. Cerwenka A, Baron JL, Lanier LL (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98: 11521–11526CrossRefPubMedGoogle Scholar
  9. Chalupny NJ, Sutherland CL, Lawrence WA, Rein-Weston A, Cosman D (2003) ULBP4 is a novel ligand for human NKG2D. Biochem Biophys Res Commun 305:129–135CrossRefPubMedGoogle Scholar
  10. Cosman D, Müllberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cell cytotoxicity through the NKG2D receptor. Immunity 14:123–133CrossRefPubMedGoogle Scholar
  11. Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF (2001) MICA engagement by human V.2Vd2 T cells enhances their antigen-dependent effector function. Immunity 15:83–93CrossRefPubMedGoogle Scholar
  12. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–171CrossRefPubMedGoogle Scholar
  13. Diefenbach A, Tomasello E, Lucas M, Jamieson AM, Hsia JK, Vivier E, Raulet DH (2002) Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3:1142–1149CrossRefPubMedGoogle Scholar
  14. Doubrovina ES, Doubrovin MM, Vider E, Sisson RB, O’Reilly RJ, Dupont B, Vyas YM (2003) Evasion from NK cell immunity by MHC class I-chain related molecules expressing colon carcinoma. J Immunol 171:6891–6899PubMedGoogle Scholar
  15. Dunn C, Chalupny NJ, Sutherland CL, Dosch S, Sivakumar PV, Johnson DC, Cosman D (2003) Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cytotoxicity. J Exp Med 197:1427–1439CrossRefPubMedGoogle Scholar
  16. Eleme K, Taner SB, Onfelt B, Collinson LM, McCann FE, Chalupny NJ, Cosman D, Hopkins C, Magee AI, Davis DM (2004) Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D. J Exp Med 199:1005–1010CrossRefPubMedGoogle Scholar
  17. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC (2001) Regulation of cutaneous malignancy by γδ T cells. Science 294:605–609CrossRefPubMedGoogle Scholar
  18. Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T (1996) Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 93: 12445–12450CrossRefPubMedGoogle Scholar
  19. Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279:1737–1740CrossRefPubMedGoogle Scholar
  20. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884CrossRefPubMedGoogle Scholar
  21. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T (2001) Costimulation of CD8 α β T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2:255–260CrossRefPubMedGoogle Scholar
  22. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738CrossRefPubMedGoogle Scholar
  23. Groh V, Brühl A, Nelson JL, El-Gabalawi H, Spies T (2003) Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci USA 100, 9452–9457CrossRefPubMedGoogle Scholar
  24. Hamerman JA, Ogasawara K, Lanier LL (2004) Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J Immunol 172:2001–2005PubMedGoogle Scholar
  25. Hankey KG, Drachenberg CB, Papadimitriou JC, Klassen DK, Philosophe B, Bartlett ST, Groh V, Spies T, Mann DL (2002) MIC expression in renal and pancreatic allografts. Transplantation 73:304–306CrossRefPubMedGoogle Scholar
  26. Havran WL, Chien YH, Allison JP (1991) Recognition of self antigens by skin-derived T cells with invariant γ δ antigen receptors. Science 252:1430–1432PubMedGoogle Scholar
  27. Houchins JP, Yabe T, McSherry C, Bach FH (1991) DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med 173:1017–1020CrossRefPubMedGoogle Scholar
  28. Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, Verkarre V, Fodil N, Bahram S, Cerf-Bensussan N, Caillat-Zucman S (2004) A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21:367–377CrossRefPubMedGoogle Scholar
  29. Lanier LL (2001) On guard—activating NK cell receptors. Nat Immunol 2:23–27CrossRefPubMedGoogle Scholar
  30. Lee JC, Lee KM, Kim DW, Heo DS (2004) Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172:7335–7340PubMedGoogle Scholar
  31. Lee N, Llano M, Carretero M, Ishitani A, Navarro F, Lopez-Botet M, Geraghty DE (1998) HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA 95:5199–5204CrossRefPubMedGoogle Scholar
  32. Li P, Willie ST, Bauer S, Morris DL, Spies T, Strong RK (1999) Crystal structure of the MHC class I homolog MIC-A, a γδ T cell ligand. Immunity 10:577–584CrossRefPubMedGoogle Scholar
  33. Li P, Morris DL, Willcox BE, Steinle A, Spies T, Strong RK (2001) Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat Immunol 2:443–451PubMedGoogle Scholar
  34. Li Z, Groh V, Strong RK, Spies T (2000) A single amino acid substitution causes loss of expression of a MICA allele. Immunogenetics 51:246–248CrossRefPubMedGoogle Scholar
  35. Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875–904CrossRefPubMedGoogle Scholar
  36. McFarland BJ, Strong RK (2003) Thermodynamic analysis of degererate recognition by the NKG2D immunoreceptor: not induced fit but rigid adaptation. Immunity 19:803–812CrossRefPubMedGoogle Scholar
  37. Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, Raulet DH, Lanier LL, Groh V, Spies T, Ebert EC, Green PH, Jabri B (2004) Coordinated Induction by IL-15 of a TCR-independent pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366CrossRefPubMedGoogle Scholar
  38. Morimoto RI, Sarge KD, Abravaya K (1992) Transcriptional regulation of heat shock genes. J Biol Chem 267: 21987–21990PubMedGoogle Scholar
  39. Moser JM, Gibbs J, Jensen PE, Lukacher AE (2002) CD94-NKG2A receptors regulate antiviral CD8+ T cell responses. Nat Immunol 3:189–195CrossRefPubMedGoogle Scholar
  40. Noppen C, Schaefer C, Zajac P, Schutz A, Kocher T, Kloth J, Heberer M, Colonna M, De Libero G, Spagnoli GC (1998) C-type lectin-like receptors in peptide-specific HLA class I-restricted expression and modulation of effector functions in clones sharing identical TCR structure and epitope specificity. Eur J Immunol 28:1134–1142CrossRefPubMedGoogle Scholar
  41. Ota M, Bahram S, Katsuyama Y, Saito S, Nose Y, Sada M, Ando H, Inoko H (2000) On the MICA deleted-MICB null, HLA-B*4801 haplotype. Tissue Antigens 56:268–271CrossRefPubMedGoogle Scholar
  42. Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, Bottino C, Moretta L, Moretta A (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J ExpMed 190: 1505–1516Google Scholar
  43. Pessino A, Sivori S, Bottino C, Malaspina A, Morelli L, Moretta L, Biassoni R, Moretta A (1998) Molecular cloning of NKp46, a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J ExpMed 188:953–960CrossRefGoogle Scholar
  44. Ploegh HL (1998) Viral strategies of immune evasion. Science 280:248–253CrossRefPubMedGoogle Scholar
  45. Radaev S, Rostro B, Brooks AG, Colonna M, Sun PD (2001) Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Immunity 15:1039–1049CrossRefPubMedGoogle Scholar
  46. Radaev S, Kattah M, You Z, Colonna M, Sun PD (2002) Making sense of the diverse ligand recognition by NKG2D. J Immunol 169:6279–6285PubMedGoogle Scholar
  47. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790CrossRefPubMedGoogle Scholar
  48. Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89CrossRefPubMedGoogle Scholar
  49. Roberts AI, Lee L, Schwartz E, Groh V, Spies T, Ebert EC, Jabri B (2001) NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol 167:5527–5530PubMedGoogle Scholar
  50. Rosen, DB, Araki, M, Hamerman JA, Chen T, Yamamura T, Lanier LL (2004) A structural basis for the association of DAP12 with mouse, but not human, NKG2D. J Immunol 173:2470–2478PubMedGoogle Scholar
  51. Russomando AK, Kikuchi M, Candia N, Franco L, Almiron M, Ubalee R, Hirayama K (2002) High frequency of MIC null haplotype (HLA-B48-MICA-del-MICB*0107N) in the Angaite Amerindian community in Paraguay. Immunogenetics 54: 439–441CrossRefPubMedGoogle Scholar
  52. Salih HR, Rammensee HG, Steinle A (2002) Down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169:4098–4102PubMedGoogle Scholar
  53. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396CrossRefPubMedGoogle Scholar
  54. Siren, J, Sareneva T, Pirhonen J, Strengell M, Veckman V, Julkunen I, Matikainen S (2004) Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J. Gen Virol 85:2357–2364CrossRefPubMedGoogle Scholar
  55. Spada, FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS, Lee HK, van Donselaar E, Hanson DA, Krensky AM, Majdic O, Porcelli SA, Morita CT, Brenner MB (2000) Self-recognition of CD1 by γδ T cells: implications for innate immunity. J Exp Med 191:937–948CrossRefPubMedGoogle Scholar
  56. Suemizu H, Radosavljevic M, Kimura M, Sadahiro S, Yoshimura S, Bahram S, Inoko H (2002) A basolateral sorting motif in the MICA cytoplasmic tail. Proc Natl Acad Sci USA 99:2971–2976CrossRefPubMedGoogle Scholar
  57. Steinle A, Groh V, Bauer S, Spies T (1998) Diversification, expression and γδ T-cell recognition of evolutionary distant members of the MIC family of major histocompatibility complex class I-related molecules. Proc Natl Acad Sci USA 95:12510–12515CrossRefPubMedGoogle Scholar
  58. Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK, Spies T (2001) Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 53:279–287CrossRefPubMedGoogle Scholar
  59. Stephens HAF (2001) MICA and MICB genes: can the enigma of their polymorphism be resolved? Trends Immunol 22:378–385CrossRefPubMedGoogle Scholar
  60. Sumitran-Holgersson S, Wilczek HE, Holgersson J, Soderstrom K (2002) Identification of the nonclassical HLA molecules, MICA, as targets for humoral immunity associated with irreversible rejection of kidney allografts. Transplantation 74:268–277CrossRefPubMedGoogle Scholar
  61. Tieng V, Le Bouguenec C, du Merle L, Bertheau P, Desreumaux P, Janin A, Charron D, Toubert A (2002) Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related MICA. Proc Natl Acad Sci USA 5:2684–2586Google Scholar
  62. Vetter CS, Groh V, thor Straten P, Spies T, Bröcker E-B, Becker J. Expression of stress induced MIC molecules on human melanoma. J Invest Dermatol 118, 600–605, 2002CrossRefPubMedGoogle Scholar
  63. Welte SA, Sinsger C, Lutz SZ, Singh-Jasuja H, Sampaio KL, Eknigk U, Rammensee HG, Steinle A (2003) Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur J Immunol 33:194–203CrossRefPubMedGoogle Scholar
  64. Wu J, Song Y, Bakker ABH, Bauer S, Spies T, Lanier LL, Phillips JH (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–732CrossRefPubMedGoogle Scholar
  65. Wu J, Groh V, Spies T (2002) T cell antigen receptor engagement and specificity in the recognition of stress-inducible MIC by human epithelial γδ T cells. J Immumol 169:1236–1240Google Scholar
  66. Wu J, Chalupny NJ, Manley TJ, Riddell SR, Cosman D, Spies T (2003) Intracellular retention of the MHC class I-related chain B ligand of NKG2D by the human CMV UL16 glycoprotein. J Immunol 170:4196–4200PubMedGoogle Scholar
  67. Yamamoto K, Fujiyama Y, Andoh A, Bamba T, Okabe H (2001) Oxidative stress increases MICA and MICB gene expression in the human colon carcinoma cell line (CaCo-2). Biochim Biophys Acta 1526:10–12PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations