Are Echinoderms of Interest to Biotechnology?

  • C. Petzelt
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 39)


The huge potential of echinoderms as a so far fairly untapped source of bioactive molecules is described. Examples are presented that show the usefulness of echinoderm-derived molecules for therapeutic application in selected fields of cancer research, in the control of bacterial growth as substances with new antibiotic properties, and finally in the context of technical applications such as antifouling substances. The molecules described here are but the mere beginning of a commercial exploitation of echinoderms and may incite a deeper involvement of biotechnology-oriented research in this material.


Brittle Star Steroid Glycoside Antifouling Activity Untapped Source Starfish Asteria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agafonova IG, Aminin DL, Shubina LK, Fedorov SN (2002) Influence of polyhydroxysteroids on [Ca(2+)](i). Steroids 67:695–701CrossRefPubMedGoogle Scholar
  2. Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G (2001) Calcitic microlenses as part of the photoreceptor system in brittle stars. Nature 412:819–822CrossRefPubMedGoogle Scholar
  3. Alender CB (1967) A biologically active substance from spines of two diadematid sea urchins. In: Russell FE, Saunders PR (eds) Animal toxins. Pergamon Press, Oxford, p 145Google Scholar
  4. Aminin DL, Agafonova IG, Fedorov SN (1995) Biological activity of disulfated polyhydroxysteroids from the Pacific brittle star Ophiopholis aculeata. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 112:201–204CrossRefPubMedGoogle Scholar
  5. Arnone MI, Bogarad LD, Collazo A, Kirchhamer CV, Cameron RA, Rast JP, Gregorians A, Davidson EH (1997) Green fluorescent protein in the sea urchin embryo: new experimental approaches to transcriptional regulatory analysis in embryos and larvae. Development 124:4649–4659PubMedGoogle Scholar
  6. Carballo JL, Hernandez-Inda ZL, Perez P, Garcia-Gravalos MD (2002) A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnol 2:17–23CrossRefPubMedGoogle Scholar
  7. De Bremaeker N, Dewael Y, Baguet F, Mallefet J (2000) Involvement of cyclic nucleotides and IP3 in the regulation of luminescence of the brittlestar Amphipholis squamata (Echinodermata). Luminescence 15:159–163CrossRefPubMedGoogle Scholar
  8. Deheyn D, Mallefet J, Jangoux M (2000) Cytological changes during light production process in dissociated photocytes from the ophiuroid Amphipholis squamata (Echinodermata). Cell Tissue Res 299:115–128PubMedGoogle Scholar
  9. Deheyn D, Mallefet J, Jangoux M (2000) Evidence of seasonal variation in luminescence performance of Amphipholis squamata (Ophiuroidea, Echinodermata): effect of environmental factors. J Exp Mar Biol Ecol 245:245–264CrossRefPubMedGoogle Scholar
  10. Deheyn D, Mallefet J, Jangoux M (2000) Evidence from polychromatism and bioluminescence that the cosmopolitan ophiuroid Amphipholis squamata (Echinodermata) might not represent a unique taxon. C R Acad Sci Paris 323:499–509PubMedGoogle Scholar
  11. Deheyn D, Mallefet J, Jangoux M (2000) Expression of bioluminescence in Amphipholis squamata (Ophiuroidea: Echinodermata) in presence of various organisms: a laboratory study. J Mar Biol Assoc UK 80:179–180CrossRefGoogle Scholar
  12. Deheyn D, Jangoux M, Warnau M (2000) Alteration of bioluminescence in Amphipholis squamata (Ophiuroidea: Echinodermata) by heavy metal contamination: a field study. Sci Tot Environ 247:41–49CrossRefGoogle Scholar
  13. Glinski Z, Jarosz J (2000) Immune phenomena in echinoderms. Arch Immunol Ther Exp 48:189–193Google Scholar
  14. Hatakeyama T, Ohuchi K, Kuroki M, Yamasaki N (1995) Amino acid sequence of a C-type lectin CEL-IV from the marine invertebrate Cucumaria echinata. Biosci Biotech Biochem 59:1314–1317Google Scholar
  15. Haug T, Kjuul AK, Styrvold OB, Sandsdalen E, Olsen OM, Stensvag K (2002) Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). J Invertebr Pathol 81:94–102CrossRefPubMedGoogle Scholar
  16. Iken K, Greer SP, Amsler CD, McClintock JB (2003) A new antifouling bioassay monitoring brown algal spore swimming behaviour in the presence of echinoderm extracts. Biofouling 19:327–334CrossRefPubMedGoogle Scholar
  17. Kuznetsova TA, Anisimov MM, Popov AM, Baranova SI, Afiyatullov SS, Kapustina II, Antonov AS, Elyakov GB (1982) A comparative study in vitro of physiological activity of triterpene glycosides of marine invertebrates of echinoderm type. Comp Biochem Physiol 73:41–43Google Scholar
  18. Lin W, Zhank H, Beck G (2001) Phylogeny of natural cytotoxicity: cytotoxic activity of coelomocytes of the purple sea urchin, Arbacia punctulata. J Exp Zool 290:741–750CrossRefPubMedGoogle Scholar
  19. Matranga V, Toia G, Bonaventura R, Müller WEG (2000) Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaper 5:113–120CrossRefGoogle Scholar
  20. Mebs D (1989) Der Dornenkronenseestern im Korallenriff. Eine oekologische Katatrophe. Naturwiss Rdschau 42:480–482Google Scholar
  21. Mebs D (1991) A myotoxic phospholipase A2 from the crown-of-thorn starfish Acanthaster planci. Toxicon 29:289–293CrossRefGoogle Scholar
  22. Mulloy B, Mourao PA, Gray E (2000) Structure/function studies of anticoagulant sulphated polysaccharides using NMR. J Biotechnol 77:123–135CrossRefPubMedGoogle Scholar
  23. Nakagawa J, Kimura A (1982) Partial purification of a toxic substance from pedicellariae of the sea urchin Toxopneustes pileolus. Jpn J Pharmacol 32:966–971PubMedGoogle Scholar
  24. Palagiano E, Zollo F, Minale L, Iorizzi M, Bryan P, McClintock J, Hopkins T (1996) Isolation of 20 glycosides from the starfish Henricia downeyae, collected in the Gulf of Mexico. J Nat Prod 59:348–354CrossRefPubMedGoogle Scholar
  25. Pereira MS, Mulloy B, Mourao PA (1999) Structure and anticoagulant activity of sulphated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J Biol Chem 274:7656–7667PubMedGoogle Scholar
  26. Sasaki T, Uchida NA, Uchida H, Takasuka N, Kamiya H, Endo Y, Tanaka M, Hayashi T, Shimizu Y (1985) Antitumor activity of aqueous extracts of marine animals. J Pharmacobiodyn 8:969–974PubMedGoogle Scholar
  27. Shiomi K, Itoh K, Yamanaka H, Kikuchi T (1985) Biological activity of crude venom from the crown-of-thorns starfish Acanthaster planci. Bull Jpn Soc Fish 51:1151–1155Google Scholar
  28. Shiomi K, Yamamoto S, Yamanaja H, Kikuchi T (1988) Purification and characterization of a lethal factor in venom of the crown-of-thorns starfish (Acanthaster planci). Toxicon 26:1077–1081CrossRefPubMedGoogle Scholar
  29. Stabili L, Pagliara P, Roch P (1996) Antibacterial activity in the coelomocytes of the sea urchin Paracentrotus lividus. Comp Biochem Physiol Biochem Mol Biol 113:639–644CrossRefGoogle Scholar
  30. Yamada K (2002) Chemo-pharmaceutical studies on the glycospingolipid constituents from echinoderm, sea cucumbers, as the medicinal materials. J Pharm Soc Jpn 122:1133–1143Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. Petzelt
    • 1
    • 2
  1. 1.Laboratoire International de Biologie Marine (LIBM)Ile d'YeuFrance
  2. 2.Experimental AnaesthesiologyUniversity Hospital CharitéBerlinGermany

Personalised recommendations