Advertisement

Action and Interaction in the Mycorrhizal Hyphosphere — a Re-evaluation of the Role of Mycorrhizas in Nutrient Acquisition and Plant Ecology

  • R. Finlay
Part of the Ecological Studies book series (ECOLSTUD, volume 181)

Keywords

Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Ectomycorrhizal Fungus Mycorrhizal Hypha Paxillus Involutus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abuarghub SM, Read DJ (1988) The biology of mycorrhiza in the Ericaceae. XII. Quantitative analysis of individual free amino acids in relation to time and depth in the soil profile. New Phytol 108:433–441CrossRefGoogle Scholar
  2. Abuzinadah RA, Read DJ (1986a) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103:481–493CrossRefGoogle Scholar
  3. Abuzinadah RA, Read DJ (1986b) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilization by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phytol 103:507–514CrossRefGoogle Scholar
  4. Abuzinadah RA, Read DJ (1989a) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. V. Nitrogen transfer in birch (Betula pendula L.) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol 112:61–68CrossRefGoogle Scholar
  5. Abuzinadah RA, Read DJ (1989b) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilization of peptides by birch (Betula pendula Roth.) infected with different mycorrhizal fungi. New Phytol 112:55–60CrossRefGoogle Scholar
  6. Abuzinadah RA, Finlay RD, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. II. Utilization of protein by mycorrhizal plants of Pinus contorta. New Phytol 103:495–506CrossRefGoogle Scholar
  7. Ahonen-Jonnarth U, Van Hees PAW, Lundström US, Finlay RD (2000) Production of organic acids by mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings exposed to elevated concentrations of aluminium and heavy metals. New Phytol 146:557–567CrossRefGoogle Scholar
  8. Ahonen-Jonnarth U, Göransson A, Finlay RD (2000) Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings treated with elevated Al concentrations. Tree Physiol 23:157–167Google Scholar
  9. Ames RN, Reid CPP, Porter L, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 95:381–396CrossRefGoogle Scholar
  10. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79CrossRefGoogle Scholar
  11. Andrade G, Linderman RG, Bethlenfalvay GJ (1998a) Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202:79–87CrossRefGoogle Scholar
  12. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998b) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96CrossRefGoogle Scholar
  13. Arnebrant K (1994) Nitrogen amendments reduce the growth of extramatrical mycelium. Mycorrhiza 5:7–15CrossRefGoogle Scholar
  14. Arnebrant K, Ek H, Finlay RD, Söderström B ( (1993) Translocation of nitrogen between Alnus glutinosa seedlings inoculated with Frankia sp. and Pinus contorta seedlings connected by a common ectomycorrhizal fungus. New Phytol 124:231–242CrossRefGoogle Scholar
  15. Arocena JM, Glowa KR, Massicotte HB, Lavkulich L (1999) Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the Ae horizon of a luvisol. Can J Soil Sci 79:25–35Google Scholar
  16. Augé RM (2001) Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  17. Bajwa R, Read DJ (1985) The biology of mycorrhiza in the Ericaceae. IX. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol 101:459–467CrossRefGoogle Scholar
  18. Bajwa R, Read DJ (1986) Utilisation of mineral and amino N sources by the ericoid mycorrhizal endophyte Hymenoscyphus ericae and by mycorrhizal and non-mycorrhizal seedlings of Vaccinium. Trans Br Mycol Soc 87:269–277Google Scholar
  19. Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA 96:3404–3411PubMedCrossRefGoogle Scholar
  20. Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307PubMedGoogle Scholar
  21. Barron GL (1988) Microcolonies of bacteria as a nutrient source for lignicolous and other fungi. Can J Bot 66:2505–2510CrossRefGoogle Scholar
  22. Bending GD, Read DJ (1995a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409CrossRefGoogle Scholar
  23. Bending GD, Read DJ (1995b) The structure and function of the vegetative mycelium of ectomycorrhizal plants. VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. New Phytol 130:411–417CrossRefGoogle Scholar
  24. Bending GD, Read DJ (1996) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612CrossRefGoogle Scholar
  25. Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101:1348–1354CrossRefGoogle Scholar
  26. Berthelin J (1983) Microbial weathering processes. In: Krumbein WE (ed) Microbial geochemistry. Blackwell, Oxford, pp 223–263Google Scholar
  27. Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509PubMedCrossRefGoogle Scholar
  28. Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and non-mycorrhizal carrot roots. Mol Plant-Microbe Interact 14:255–260PubMedGoogle Scholar
  29. Biró B, Köves-Péchy K, Vörös I, Takács T, Eggenberger P, Strasser RJ (2000) Interrelatio between Azospirillum and Rhizobium nitrogen fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile AMF-free or normal conditions. Appl Soil Ecol 15:159–168CrossRefGoogle Scholar
  30. Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534–542CrossRefGoogle Scholar
  31. Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11:119–126CrossRefGoogle Scholar
  32. Boyd R, Furbank RT, Read DJ (1986) Ectomycorrhiza and water relations of trees. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 689–693Google Scholar
  33. Bradley R, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91:197–201CrossRefGoogle Scholar
  34. Brandes B, Godbold DL, Kuhn AJ, Jentschke G (1998) Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition. New Phytol 140:735–743CrossRefGoogle Scholar
  35. Bruce A, Smith SE, Tester M (1994) The development of mycorrhizal infection in cucumber: effects of P supply on root growth, formation of entry points and growth of infection units. New Phytol 127:507–514CrossRefGoogle Scholar
  36. Cairney JWG, Burke RM (1994) Fungal enzymes degrading plant cell walls: their possible significance in the ectomycorrhizal symbiosis. Mycol Res 98:1345–1356Google Scholar
  37. Cairney JWG, Burke RM (1998) Do ecto-and ericoid mycorrhizal fungi produce peroxidase activity? Mycorrhiza 8:61–65CrossRefGoogle Scholar
  38. Cairney JWG, Chambers SM (eds) (1999) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin Heidelberg New YorkGoogle Scholar
  39. Cairney JWG, Taylor AFS, Burke RM (2003) No evidence for lignin peroxidase genes in ectomycorrhizal fungi. New Phytol 160:461–462CrossRefGoogle Scholar
  40. Callot G, Maurette M, Pottier L, Dubois A (1987) Biogenic etching of microfeatures in amorphous and crystalline silicates. Nature 328:147–149CrossRefGoogle Scholar
  41. Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44PubMedGoogle Scholar
  42. Chalot M, Brun A, Finlay RD, Söderström B (1994a) Metabolism of [14C]glutamate and [14C]glutamine by the ectomycorrhizal fungus Paxillus involutus. Microbiology 140:1641–1649CrossRefGoogle Scholar
  43. Chalot M, Brun A, Finlay RD, Söderström B (1994b) Respiration of [14C] alanine by the ectomycorrhizal fungus Paxillus involutus. FEMS Microbiol Lett 121:87–92PubMedGoogle Scholar
  44. Chalot M, Kytöviita MM, Finlay RD, Söderström B (1995a) Factors affecting amino acid uptake in the ectomycorrhizal fungus Paxillus involutus. Mycol Res 99:1131–1138Google Scholar
  45. Chalot M, Finlay RD, Ek H, Söderström B (1995b) Metabolism of [15N] alanine by the ectomycorrhizal fungus Paxillus involutus. Exp Mycol 19:297–304CrossRefGoogle Scholar
  46. Chanway CP, Holl FB (1991) Biomass increase and associative nitrogen fixation of mycorrhizal Pinus contorta seedlings inoculated with a plant growth promoting Bacillus strain. Can J Bot 69:507–511Google Scholar
  47. Chen DM, Taylor AFS, Burke RM, Cairney JWG (2001) Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi using PCR. New Phytol 152:151–158CrossRefGoogle Scholar
  48. Colpaert JV, Van Assche JA (1987) Heavy metal tolerance in some ectomycorrhizal fungi. Funct Ecol 1:415–421Google Scholar
  49. Colpaert JV, Van Assche JA (1992) The effects of cadmium and the cadmium-zinc interaction on the axenic growth of ectomycorrhizal fungi. Plant Soil 145:237–243Google Scholar
  50. Colpaert JV, Verstuyft I (1999) The Ingestad concept in ectomycorrhizal research: possibilities and limitations. Physiol Plant 105:233–238CrossRefGoogle Scholar
  51. Colpaert JV, van Laere A, van Assche JA (1996) Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings. Tree Physiol 16:787–793PubMedGoogle Scholar
  52. Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. II. Uptake and translocation of phosphorus, zinc and sulphur. New Phytol 81:43–52CrossRefGoogle Scholar
  53. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRefGoogle Scholar
  54. Cromack K Jr, Sollins P, Graustein WC, Speidel K, Todd AW, Spycher G, Li CY, Todd RL (1979) Calcium oxalate accumulations and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11:463–468CrossRefGoogle Scholar
  55. Dalpé Y (1986) Axenic synthesis of ericoid mycorrhiza in Vaccinium angustifolium Ait. by Oidiodendron species. New Phytol 103:391–396CrossRefGoogle Scholar
  56. Daniell TJ, Hodge A, Young JPW, Fitter AH (1999) How many fungi does it take to change a plant community? Trends Plant Sci 4:81–82CrossRefGoogle Scholar
  57. Davis RM, Menge JA (1980) Influence of Glomus fasciculatus and soil phosphorus on Phytophthora root rot of citrus. Phytopathology 70:447–452Google Scholar
  58. Dighton J, Thomas ED, Latter PM (1987) Interactions between tree roots, mycorrhizas, a saprotrophic fungus and the decomposition of organic substrates in a microcosm. Biol Fertil Soil 4:145–150CrossRefGoogle Scholar
  59. Donnelly PK, Entry JA, Crawford DL (1993) Degradation of Atrazine and 2.4-dichlorophenoxyacetic acid by mycorrhizal fungi at 3 nitrogen concentrations invitro. Appl Environ Microbiol 59:2642–2647PubMedGoogle Scholar
  60. Duchesne LC, Peterson RL, Ellis BE (1987) The accumulation of plant-produced antimicrobial compounds in response to ectomycorrhizal fungi: a review. Phytoprotection 68:17–27Google Scholar
  61. Duchesne LC, Peterson RL, Ellis BE (1988a) Interaction between the ectomycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporum. Can J Bot 66:558–562Google Scholar
  62. Duchesne LC, Peterson RL, Ellis BE (1988b) Pine root exudate stimulates antibiotic synthesis by the ectomycorrhizal fungus Paxillus involutus. New Phytol 108:471–476CrossRefGoogle Scholar
  63. Duchesne LC, Peterson RL, Ellis BE (1989) The time course of disease suppression by the ectomycorrhizal fungus Paxillus involutus. New Phytol 111:693–698CrossRefGoogle Scholar
  64. Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287:834–836CrossRefGoogle Scholar
  65. Entry JA, Donnelly PK, Cromack K (1991) Influence of ectomycorrhizal mat soils on lignin and cellulose degradation. Biol Fertil Soils 11:75–78CrossRefGoogle Scholar
  66. Entry JA, Rose CL, Cromack K (1992) Microbial biomass and nutrient concentrations in hyphal mats of the ectomycorrhizal fungus Hysterangium setchellii in a coniferous forest soil. Soil Biol Biochem 24:447–453CrossRefGoogle Scholar
  67. Erland SE, Finlay RD (1992) Effects of temperature and incubation time on the ability of three ectomycorrhizal fungi to colonize P. sylvestris roots. Mycol Res 96:270–272Google Scholar
  68. Finlay RD (1985) Interactions between soil micro-arthropods and endomycorrhizal associations of higher plants. In: Fitter AH (ed) Ecological interactions in soil: plants, microbes and animals. Blackwell, Oxford, pp 319–331Google Scholar
  69. Finlay RD (1989) Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris and Suillus grevillei and Boletinus cavipes. New Phytol 112:185–192CrossRefGoogle Scholar
  70. Finlay RD (1993) Uptake and mycelial translocation of nutrients by ectomycorrhizal fungi. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhiza in ecosystems. Proc 3rd Eur Symp Mycorrhizas. CAB International, Wallingford, pp 91–97Google Scholar
  71. Finlay RD (1995) Interactions between soil acidification, plant growth and nutrient uptake in ectomycorrhizal associations of forest trees. Ecol Bull 44:197–214Google Scholar
  72. Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103:143–156CrossRefGoogle Scholar
  73. Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting plants. New Phytol 103:157–165CrossRefGoogle Scholar
  74. Finlay R, Söderström B (1992) Mycorrhiza and carbon flow to the soil. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New YorkGoogle Scholar
  75. Finlay RD, Ek H, Odham G, Söderström B (1988) Mycelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol 110:59–66CrossRefGoogle Scholar
  76. Finlay RD, Ek H, Odham G, Söderström B (1989) Uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium and nitrate sources by intact ectomycorrhizal systems of Fagus sylvatica infected with Paxillus involutus. New Phytol 113:47–55CrossRefGoogle Scholar
  77. Finlay RD, Frostegård Å, Sonnerfeldt A-M (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytol 120:105–115CrossRefGoogle Scholar
  78. Fitter AH (1977) Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol 79:119–125CrossRefGoogle Scholar
  79. Fitter AH (1985) Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol 99:257–265CrossRefGoogle Scholar
  80. Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132Google Scholar
  81. Fitter AH, Moyerson B (1996) Evolutionary trends in root-microbe symbioses. Philos Trans R Soc Lond Ser B 351:1367–1375Google Scholar
  82. Fitter AH, Heinemeyer A, Staddon PL (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147:179–187CrossRefGoogle Scholar
  83. Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307:53–56CrossRefGoogle Scholar
  84. Frank AB (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145Google Scholar
  85. Frank AB (1894) Die Bedeutung der Mykorrhizapilze für die gemeine Kiefer. Forstwissen Centralbl 16:1852–1890Google Scholar
  86. Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic finger-printing of fluorescent pseudomonads associated with the Douglas fir Laccaria bicolor mycorrhizosphere. Appl Environ Microbiol 63:1852–1860PubMedGoogle Scholar
  87. Frey-Klett P, Pierrat J-C, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during the establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas Fir. Appl Environ Microbiol 63:139–144PubMedGoogle Scholar
  88. Frey-Klett P, Churin J-L, Pierrat J-C, Garbaye J (1999) Dose effect in the dual inoculation of an ectomycorrhizal fungus and a mycorrhizal helper bacterium in two forest nurseries. Appl Environ Microbiol 63:139–144Google Scholar
  89. Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328PubMedCrossRefGoogle Scholar
  90. Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418Google Scholar
  91. Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92PubMedGoogle Scholar
  92. Gadd GM (ed) (2005) Fungi in biogeochemical cycles. Cambridge University Press, CambridgeGoogle Scholar
  93. Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133PubMedCrossRefGoogle Scholar
  94. Garbaye J (1991) Biological interactions in the mycorrhizosphere. Experientia 47:370–375CrossRefGoogle Scholar
  95. Garbaye J (1994) Helper bacteria — a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  96. Garbaye J, Bowen GD (1989) Stimulation of ectomycorrhizal infection of Pinus radiata by some microorganisms associated with the mantle of ectomycorrhizas. New Phytol 112:383–388CrossRefGoogle Scholar
  97. Garcia-Garrido JM, Garcia-Romera I, Ocampo JA (1992) Cellulase production by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nichol. and Gerd.) Gerd. and Trappe. New Phytol 121:221–226CrossRefGoogle Scholar
  98. Gay G, Normand L, Marmeisse R, Sotta B, Debaud JC (1994) Auxin overproducer mutants of Hebeloma cylindrosporum Romagnesi have increased mycorrhizal activity. New Phytol 128:645–657CrossRefGoogle Scholar
  99. Genney DR, Alexander IJ, Killham K, Mehang AA (2004) Degradation of the polycyclic aromatic hydrocarbon (PAH) fluorene is retarded in a Scots pine ectomycorrhizosphere. New Phytol 163:641–649CrossRefGoogle Scholar
  100. Gorissen A, Kuyper ThW (2000) Fungal species-specific responses of ectomycorrhizal Scots pine (Pinus sylvestris) to elevated [CO2]. New Phytol 146:163–168CrossRefGoogle Scholar
  101. Graustein WC, Cromack K Jr, Sollins P (1977) Calcium oxalate: occurrence in soils and effect on nutrient and geochemical cycles. Science 198:1252–1254PubMedGoogle Scholar
  102. Grayston SJ, Campbell CD, Vaughan D (1994) Microbial diversity in the rhizospheres of different tree species. In: Pankhurst CE (ed) Soil biota: management in sustainable farming systems. CSIRO, AdelaideGoogle Scholar
  103. Griffiths RP, Caldwell BA (1992) Mycorrhizal mat communities in forest soils. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhiza in ecosystems. Proc 3rd Eur Symp Mycorrhizas. CAB International, Wallingford, pp 98–105Google Scholar
  104. Griffiths RP, Baham JE, Caldwell BA (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biol Biochem 26:331–337CrossRefGoogle Scholar
  105. Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422CrossRefGoogle Scholar
  106. Haselwandter K, Winkelmann G (1998) Identification and characterisation of siderophores of mycorrhizal fungi. In: Varma A (ed) Mycorrhiza manual. Springer, Berlin Heidelberg New York, pp 243–254Google Scholar
  107. Haselwandter K, Bobleter O, Read DJ (1990) Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153:352–354CrossRefGoogle Scholar
  108. Hawkins H-J, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285CrossRefGoogle Scholar
  109. Heinonsalo J, Jorgensen KS, Sen R (2001) Microcosm-based analyses of Scots pine seedling growth, ectomycorrhizal fungal community growth and bacterial carbon utilization profiles in boreal forest humus and underlying illuvial mineral horizons. FEMS Microbiol Ecol 36:73–84PubMedGoogle Scholar
  110. Hibbett DS, Gilbert L-B, Donaghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–508PubMedCrossRefGoogle Scholar
  111. Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landwirtsch Ges Berlin 98:59–78Google Scholar
  112. Hirsch P, Eckhardt FEW, Palmer RJ (1995) Fungi active in weathering of rock and stone monuments. Can J Bot 73:S1384–S1390Google Scholar
  113. Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299PubMedCrossRefGoogle Scholar
  114. Högberg P, Plamboeck AH, Taylor AFS, Fransson PMA (1999) Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proc Natl Acad Sci USA 96:8534–8539PubMedCrossRefGoogle Scholar
  115. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792PubMedCrossRefGoogle Scholar
  116. Holmström SJM, Lundström US, Finlay RD, van Hees PAW (2004) Siderophores in forest soil solution. Biogeochemistry 71:247–258CrossRefGoogle Scholar
  117. Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and forest tree growth — non-nutritional effects and interactions with mycorrhizae. Biol Fertil Soils 20:263–269CrossRefGoogle Scholar
  118. Jentschke G, Brandes B, Kuhn AJ, Schröder WH, Becker JS, Godbold DL (2000) The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant Soil 220:243–246CrossRefGoogle Scholar
  119. Johansen A, Finlay RD, Olsson P-A (1996) N assimilation in the external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 133:705–712CrossRefGoogle Scholar
  120. Johansson J, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–12CrossRefPubMedGoogle Scholar
  121. Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In-situ 13CO2 pulse-labelling of upland grassland demonstrates that a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334CrossRefGoogle Scholar
  122. Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234CrossRefGoogle Scholar
  123. Jones DL (1998) Organic acids in the rhizosphere — a critical review. Plant Soil 205:25–44CrossRefGoogle Scholar
  124. Jongmans AG, van Breemen N, Lundström U, Finlay RD, van Hees PAW, Giesler R, Melkerud P-A, Olsson M, Srinivasan M, Unestam T (1997) Rock-eating fungi: a true case of mineral plant nutrition? Nature 389:682–683CrossRefGoogle Scholar
  125. Karabaghli C, Frey-Klett P, Sotta B, Bonnet M, Le Tacon F (1998) In vitro effects of Laccaria bicolor S238 N and Pseudomonas fluorescens strain BBc6 on rooting of de-rooted shoot hypocotyls of Norway spruce. Tree Physiol 18:103–111PubMedGoogle Scholar
  126. Kerley SJ, Read DJ (1995) The biology of mycorrhiza in the Ericaceae. XVIII. Chitin degradation by Hymenoscyphus ericae and transfer of chitin-nitrogen to the host plant. New Phytol 131:369–375CrossRefGoogle Scholar
  127. Kerley SJ, Read DJ (1997) The biology of mycorrhiza in the Ericaceae. XIX. Fungal mycelium as a nitrogen source for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host plants. New Phytol 136:691–701CrossRefGoogle Scholar
  128. Kerley SJ, Read DJ (1998) The biology of mycorrhiza in the Ericaceae. XX. Plant and mycorrhizal necromass as nitrogenous substrates for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host. New Phytol 139:353–360CrossRefGoogle Scholar
  129. Klironomos JN, Hart MM (2001) Food-web dynamics — animal nitrogen swap for plant carbon. Nature 410:651–652PubMedCrossRefGoogle Scholar
  130. Klironomos JN, Bednarczuk EM, Neville J (1999) Reproductive significance of saprobic and arbuscular mycorrhizal fungi by the collembolan, Folsomia candida. Funct Ecol 13:756–761CrossRefGoogle Scholar
  131. Koide R, Shumway DL, Mabon SA (1994) Mycorrhizal fungi and reproduction of field populations of Abutilon theophrasti Medic. (Malvaceae). New Phytol 126:123–130CrossRefGoogle Scholar
  132. Kope HH, Fortin JA (1989) Inhibition of phytopathogenic fungi in vitro by cell free culture media of ectomycorrhizal fungi. New Phytol 113:57–63CrossRefGoogle Scholar
  133. Kozdrój J, van Elsas JD (2000) Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405–1417CrossRefGoogle Scholar
  134. Lamhamedi MS, Bernier PY, Fortin JA (1992) Hydraulic conductance and soil water potential at the soil root interface of Pinus pinaster seedlings inoculated with different dikaryons of Pisolithus sp. Tree Physiol 10:231–244PubMedGoogle Scholar
  135. Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254PubMedCrossRefGoogle Scholar
  136. Lapeyrie F, Chilvers GA, Bhem CA (1987) Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch ex Fr.) Fr. New Phytol 106:139–146CrossRefGoogle Scholar
  137. Lapeyrie F, Raager J, Vairelles D (1991) Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Can J Bot 69:342–346Google Scholar
  138. Larsen J, Jakobsen I (1996) Effects of a mycophagous Collembola on the symbioses between Trifolium subterraneum and three arbuscular mycorrhizal fungi. New Phytol 133:295–302CrossRefGoogle Scholar
  139. Leake JR (1994) The biology of myco-heterotrophic (“saprophytic”) plants. Tansley Review no 69. New Phytol 127:171–216CrossRefGoogle Scholar
  140. Leake JR, Read DJ (1990a) Proteinase activity in mycorrhizal fungi. I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol 115:243–250CrossRefGoogle Scholar
  141. Leake JR, Read DJ (1990b) Chitin as a nitrogen source for mycorrhizal fungi. Mycol Res 94:993–995Google Scholar
  142. Leake JR, Read DJ (1997) Mycorrhizal fungi in terrestrial habitats. In: Wicklow DT, Söderström B (eds) The Mycota. IV. Environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 281–301Google Scholar
  143. Leake JR, Donnelly DP, Saunders EM, Boddy L, Read DJ (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiol 21:71–82PubMedGoogle Scholar
  144. Leake JR, McKendrick SL, Bidartondo M, Read DJ (2004) Symbiotic germination and development of the myco-heterotroph Monotropa hypopitys in nature and its requirement for locally distributed Tricholoma spp. New Phytol 163:405–423CrossRefGoogle Scholar
  145. Leyval C, Berthelin J (1989) Interactions between Laccaria laccata-Agrobacterium radiobacter and beech roots influence on phosphorus, potassium, magnesium and iron mobilisation from minerals and plant growth. Plant Soil 117:103–110CrossRefGoogle Scholar
  146. Leyval C, Berthelin J (1991) Weathering of a mica by roots and rhizospheric microorganisms of pine. Soil Sci Soc Am J 55:1009–1016CrossRefGoogle Scholar
  147. Leyval C, Berthelin J (1993) Rhirodeposition and net release of soluble organic-compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol Fertil Soil 15:259–267CrossRefGoogle Scholar
  148. Li CY, Massicotte HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. Associated with Douglas-fir tuberculate ectomycorrhizae. Plant Soil 140:35–40CrossRefGoogle Scholar
  149. Lindahl B, Stenlid J, Olsson S, Finlay R (1999) Translocation of 32P between interacting mycelia of a wood decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 144:183–193CrossRefGoogle Scholar
  150. Lindahl B, Stenlid J, Finlay RD (2001) Effects of resource availability on mycelial interactions and 32P transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms. FEMS Microbiol Ecol 38:43–52Google Scholar
  151. Lindahl B, Taylor AFS, Finlay RD (2002) Defining nutritional constraints on carbon cycling — towards a less “phytocentric” perspective. Plant Soil 242:123–135CrossRefGoogle Scholar
  152. Lindahl BD, Taylor AFS (2004) Occurrence of N-acetylhexosaminidase-encoding genes in ectomycorrhizal basidiomycetes. New Phytol 164:193–199CrossRefGoogle Scholar
  153. Lindahl BD, Finlay RD, Cairney JWG (2005) Enzymatic activities of mycelia in mycorrhizal fungal communities. In: Dighton J, Oudemans P, White J (eds) The fungal community: its organization and role in the ecosystem. Marcel Dekker, New York, pp 331–348Google Scholar
  154. Mahmood S, Finlay RD, Erland S, Wallander H (2001) Solubilisation and colonisation of wood ash by ecto-mycorrhizal fungi isolated from a wood ash fertilised spruce forest. FEMS Microbiol Ecol 35:151–161PubMedGoogle Scholar
  155. Marschner P, Crowley DE, Higashi RM (1997) Root exudation and physiological status of a root colonizing fluorescent pseudomonad in mycorrhizal and nonmycorrhizal pepper (Capsicum annum L.). Plant Soil 189:11–20CrossRefGoogle Scholar
  156. Martin F (2001) Frontiers in molecular mycorrhizal research — genes, loci, dots and spins. New Phytol 150:499–507CrossRefGoogle Scholar
  157. Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163Google Scholar
  158. Marx DH (1972) Ectomycorrhizae as biological deterrents to pathogenic root infections. Annu Rev Phytopathol 10:429–454CrossRefPubMedGoogle Scholar
  159. McAfee BJ, Fortin JA (1986) Competitive interactions of ectomycorrhizal mycobionts under field conditions. Can J Bot 64:848–852Google Scholar
  160. McGonigle TP (1995) The significance of grazing on fungi in nutrient cycling. Can J Bot 73:1370–1376Google Scholar
  161. McKendrick SL, Leake J, Taylor DL, Read DR (2000a) Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytol 145:523–537CrossRefGoogle Scholar
  162. McKendrick SL, Leake J, Read DR (2000b) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548CrossRefGoogle Scholar
  163. Meharg AA, Cairney JWG (2000) Ectomycorrhizas — extending the capabilities of rhizosphere remediation? Soil Biol Biochem 32:1475–1484CrossRefGoogle Scholar
  164. Meharg AA, Cairney JWG, Maguire N (1997a) Mineralisation of 2,4-dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere 34:2495–2504CrossRefGoogle Scholar
  165. Meharg AA, Dennis GR, Cairney JWG (1997b) Biotransformation of 2,4,6-trinitrotoluene (TNT) by ectomycorrhizal basidiomycetes. Chemosphere 35:513–521CrossRefGoogle Scholar
  166. Melin E, Nilsson H (1950) Transfer of radioactive phosphorus to pine seedlings by means of mycorrhizal hyphae. Physiol Plant 3:88–92CrossRefGoogle Scholar
  167. Melin E, Nilsson H (1953) Transfer of labelled nitrogen from glutamic acid to pine seedlings through the mycelium of Boletus variegatus. Nature 171:134PubMedGoogle Scholar
  168. Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732PubMedCrossRefGoogle Scholar
  169. Mogge B, Loferer C, Hutzler P, Hartman A (2000) Bacterial community structure and colonization patterns of Fagus sylvatica L. Ectomycorhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271–278CrossRefGoogle Scholar
  170. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical applications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, LondonGoogle Scholar
  171. Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:477–491Google Scholar
  172. Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916CrossRefGoogle Scholar
  173. Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270Google Scholar
  174. Newsham KK, Fitter AH, Watkinson AR. 1995. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411CrossRefGoogle Scholar
  175. Nicolson TH (1959) Mycorrhiza in the Graminae. I. Vesicular-arbuscular endophytes, with special reference to the external phase. Trans Br Mycol Soc 42:421–438CrossRefGoogle Scholar
  176. Nicolson TH (1975) Evolution of vesicular-arbuscular mycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 25–34Google Scholar
  177. Nurmiaho-Lassila EL, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can J Microbiol 43:1017–1035CrossRefGoogle Scholar
  178. Ochs M (1996) Influence of humified and non-humified natural organic compounds on mineral dissolution. Chem Geol 132:119–124CrossRefGoogle Scholar
  179. Olsson PA, Wallander H (1998) Interactions between ectomycorrhizal fungi and the bacterial community in soil amended with various primary minerals. FEMS Microbiol Ecol 27:195–205Google Scholar
  180. Olsson PA, Chalot M, Bååth E, Finlay RD, Söderström B (1996) Reduced bacterial activity in a sandy soil with ectomycorrhizal mycelia growing with Pinus contorta seedlings. FEMS Microbiol Ecol 21:77–86Google Scholar
  181. Palmer RJ Jr, Sternberg C (1999) Modern microscopy in biofilm research: confocal microscopy and other approaches. Curr Opin Biotechnol 10:263–268PubMedCrossRefGoogle Scholar
  182. Paris F, Bonnaud P, Ranger J, Robert M, Lapeyrie F (1995a) Weathering of ammonium-or calcium-saturated 2:1 phyllosilicates by ectomycorrhizal fungi in vitro. Soil Biol Biochem 27:1237–1244CrossRefGoogle Scholar
  183. Paris F, Bonnaud P, Ranger J, Lapeyrie F (1995b) In vitro weathering of phlogopite by ectomycorrhizal fungi. I. Effect of K+ and Mg2+ deficiency on phyllosilicate evolution. Plant Soil 177:191–201CrossRefGoogle Scholar
  184. Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. 2. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150CrossRefGoogle Scholar
  185. Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328PubMedCrossRefGoogle Scholar
  186. Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in Gramnegative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 97:8789–8793PubMedCrossRefGoogle Scholar
  187. Pearson JN, Jakobsen I (1993) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants measured by dual labelling with 32P and 33P. New Phytol 124:489–494CrossRefGoogle Scholar
  188. Perez-Moreno J, Read DJ (2000) Mobilization and transfer of nutrients from litter to tree seedlings via vegetative mycelium of ectomycorrhizal plants. New Phytol 145:301–309CrossRefGoogle Scholar
  189. Perez-Moreno J, Read DJ (2001a) Nutrient transfer from soil nematodes to plants: a direct pathway provided by the mycorrhizal mycelial network. Plant Cell Environ 24:1219–1226CrossRefGoogle Scholar
  190. Perez-Moreno J, Read DJ (2001b) Exploitation of pollen by mycorrhizal mycelial systems with special reference to nutrient cycling in boreal forests. Proc R Soc Lond Ser B 268:1329–1335CrossRefGoogle Scholar
  191. Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5:496–501PubMedCrossRefGoogle Scholar
  192. Perry DA, Margolis H, Choquette C, Molina R, Trappe JM (1989) Ectomycorrhizal mediation of competition between coniferous tree species. New Phytol 112:501–511CrossRefGoogle Scholar
  193. Peyronel B (1923) Fructification de l’endophyte à arbuscules et à vesicules des mycorhizes endotrophes. Bull Soc Mycol 39:119–126Google Scholar
  194. Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164PubMedCrossRefGoogle Scholar
  195. Querejeta JI, Egerton-Warburton LM, Allen MF (2003) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64PubMedCrossRefGoogle Scholar
  196. Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GL, Koslowski TT (eds) Ectomycorrhizae. Academic Press, New York, pp 299–343Google Scholar
  197. Ravnskov S, Jakobsen I (1999) Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza 8:329–334CrossRefGoogle Scholar
  198. Ravnskov S, Nybroe O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol 142:113–122CrossRefGoogle Scholar
  199. Read DJ (1984) The structure and function of the vegetative mycelium of mycorrhizal roots. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 215–240Google Scholar
  200. Read DJ (1987) In support of Frank’s organic nitrogen theory. Angew Bot 61:25–37Google Scholar
  201. Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391CrossRefGoogle Scholar
  202. Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres P, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 287–303Google Scholar
  203. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems — a journey towards relevance? New Phytol 157:475–492CrossRefGoogle Scholar
  204. Read DJ, Stribley DP (1975) Some mycological aspects of the biology of mycorrhiza in the Ericaceae. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizae. Academic Press, London, pp 105–117Google Scholar
  205. Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil: plants, microbes and animals. Blackwell, Oxford, pp 193–217Google Scholar
  206. Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in “lower” land plants. Philos Trans R Soc Lond B 355:815–831CrossRefGoogle Scholar
  207. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  208. Remy W, Taylor TN, Haas H, Kerp H (1994) Four hundred-million-year-old vesicular-arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843PubMedGoogle Scholar
  209. Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. New Phytol 136:667–677CrossRefGoogle Scholar
  210. Requena N, Perez-Solis E, Azcón-Aguilar C, Jefferies P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498PubMedCrossRefGoogle Scholar
  211. Rhodes LH, Gerdemann JW (1975) Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions. New Phytol 75:555–561CrossRefGoogle Scholar
  212. Robinson D, Fitter AH (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50:9–13CrossRefGoogle Scholar
  213. Rosling A, Landeweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol profile determined by morphotyping and genetic verification. New Phytol 159:775–783CrossRefGoogle Scholar
  214. Rosling A, Lindahl BD, Finlay RD (2004a) Carbon allocation in intact mycorrhizal systems of Pinus sylvestris L. seedlings colonizing different mineral substrates. New Phytol 162:795–802CrossRefGoogle Scholar
  215. Rosling A, Lindahl BD, Taylor AFS, Finlay RD (2004b) Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47:31–37CrossRefPubMedGoogle Scholar
  216. Ruess L, Dighton J (1996) Cultural studies on soil nematodes and their fungal hosts. Nematologica 42:330–346CrossRefGoogle Scholar
  217. Ruiz-Lozano JM, Bonfante P (2000) A Burkholderia strain living inside the arbuscular mycorrhizal fungus Gigaspora margarita possesses the vacB gene, which is involved in host cell colonization by bacteria. Microb Ecol 39:137–144PubMedCrossRefGoogle Scholar
  218. Sanders FE, Tinker PB (1973) Phosphate flow into mycorrhizal roots. Pest Sci 4:385–395Google Scholar
  219. Sarand I, Timonen S, Nurmiaho-Lassila E-L, Koivula T, Haahtela K, Romantschuk M, Sen R (1998) Microbial biofilms and degradative catabolic plasmid harbouring fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiol Ecol 27:115–126Google Scholar
  220. Sarand I, Timonen S, Koivula T, Peltola R, Haahtela K, Sen R, Romantschuk M (1999) Tolerance and biodegradation of m-toluate by Scots pine, a mycorrhizal fungus and fluorescent pseudomonads individually and under associative conditions. J Appl Microbiol 86:817–826PubMedCrossRefGoogle Scholar
  221. Sarand I, Haario H, Jørgensen, KS, Romantschuk M (2000) Effect of inoculation of a TOL plasmid containing mycorrhizosphere bacterium on development of Scots pine seedlings, their mycorrhizosphere and the microbial flora in m-toluate-amended soil. FEMS Microbiol Ecol 31:127–141PubMedGoogle Scholar
  222. Sastry MSR, Sharma AK, Johri BN (2000) Effect of an AM fungal consortium and Pseudomonas on the growth and nutrient uptake of Eucalyptus hybrid. Mycorrhiza 10:55–61CrossRefGoogle Scholar
  223. Schimel JP, Bennet J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecolgy 85(3):591–602Google Scholar
  224. Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466–469PubMedCrossRefGoogle Scholar
  225. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  226. Sen R (2000) Budgeting for the wood-wide web. New Phytol 145:161–165CrossRefGoogle Scholar
  227. Setälä H (1995) Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology 76:1844–1851CrossRefGoogle Scholar
  228. Setälä H, Rissanen J, Markkola AM (1997) Conditional outcomes in the relationship between pine and ectomycorrhizal fungi in relation to biotic and abiotic environment. Oikos 80:112–122Google Scholar
  229. Setälä H, Kulmala P, Mikola J, Markkola AM (1999) Influence of ectomycorrhiza on the structure of detrital food webs in pine rhizosphere. Oikos 87:113–122Google Scholar
  230. Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Symbiotic solution to arsenic contamination. Nature 404:951–952PubMedGoogle Scholar
  231. Shaw TM, Dighton T, Sanders F (1995) Interactions between ectomycorrhizal and saprotrophic fungi on agar and in association with seedlings of lodgepole pine (Pinus contorta). Mycol Res 99:159–165CrossRefGoogle Scholar
  232. Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997a) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582CrossRefGoogle Scholar
  233. Simard SW, Jones MD, Durall DM, Perry DA, Myrold DD, Molina R (1997b) Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytol 137:529–542CrossRefGoogle Scholar
  234. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69CrossRefGoogle Scholar
  235. Smith SE, Gianinazzi-Pearson V (1990) Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L.: effects of photon irradiance and phosphate nutrition. Aust J Plant Physiol 17:177–188Google Scholar
  236. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  237. Smith SE, Smith FA (1997) Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. Tansley Rev no 96. New Phytol 137:373–388CrossRefGoogle Scholar
  238. Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366CrossRefGoogle Scholar
  239. Smits MM, Hoffland E, Jongmans AG, van Breemen N (2005) Contribution of mineral tunneling to total feldspar weathering. Geoderma 125:59–69CrossRefGoogle Scholar
  240. Söderström B, Read DJ (1987) Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilised soil. Soil Biol Biochem 19:231–236CrossRefGoogle Scholar
  241. St. John TV, Coleman DC, Reid CPP (1983) Growth and spatial distribution of nutrient absorbing organs: selective exploitation of soil heterogeneity. Plant Soil 71:487–493CrossRefGoogle Scholar
  242. Stribley DP, Read DJ (1980) The biology of mycorrhiza in the Ericaceae. VII. The relationship between mycorrhizal infection and the capacity to utilise simple and complex organic nitrogen sources. New Phytol 86:365–371CrossRefGoogle Scholar
  243. Stubblefield SP, Taylor TN, Trappe JM (1987a) Fossil mycorrhizae: a case for symbiosis. Science 237:59–60PubMedGoogle Scholar
  244. Stubblefield SP, Taylor TN, Trappe JM (1987b) Antarctic VAM fossils. Am J Bot 74:1904–1911CrossRefGoogle Scholar
  245. Stubblefield SP, Taylor TN, Seymour RL (1987 c) A possible endogonaceous fungus from the Triassic of Antarctica. Mycologia 79:905–906Google Scholar
  246. Summerbell RC (1987) The inhibitory effect of Trichoderma species and other soil microfungi on mycorrhiza formation by Laccaria bicolor in vitro. New Phytol 105:437–448CrossRefGoogle Scholar
  247. Summerbell RC (1989) Microfungi associated with the mycorrhizal mantle and adjacent microhabitats within the rhizosphere of black spruce. Can J Bot 67:1085–1095Google Scholar
  248. Sun Y-P, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay RD (1999) Exudation-reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and other microorganisms. Mycorrhiza 9:137–144CrossRefGoogle Scholar
  249. Szaniszlo PJ, Powell PE, Reid CPP, Cline GR (1981) Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi. Mycologia 73:1158–1174Google Scholar
  250. Taylor DL, Bruns TD (1997) Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci USA 94:4510–4515PubMedCrossRefGoogle Scholar
  251. Taylor AFS, Martin F, Read DJ (2000) Fungal diversity in ectomycorrhizal communities of Norway spruce (Picea abies (L.) Karst.) and Beech (Fagus sylvatica L.) in forests along north-south transects in Europe. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies, vol 142. Springer, Berlin Heidelberg New York, pp 343–365Google Scholar
  252. Timonen S, Sen R (1998) Heterogeneity of fungal and plant enzyme expression in intact Scots pine-Suillus bovinus and-Paxillus involutus mycorrhizospheres developed in natural forest humus. New Phytol 138:355–366CrossRefGoogle Scholar
  253. Timonen S, Jørgensen K, Haahtela K, Sen R (1998) Bacterial community structure at defined locations of the Pinus sylvestris-Suillus bovinus and-Paxillus involutus mycorrhizospheres in dry forest humus and nursery peat. Can J Microbiol 44:499–513CrossRefGoogle Scholar
  254. Tisdall JM (1974) Possible role of soil microorganisms in aggregation of soils. Plant Soil 159:115–121Google Scholar
  255. Tisdall JM, Oades JM (1979) Stabilisation of soil aggregates by the root systems of ryegrass. Aust J Soil Res 17:429–441CrossRefGoogle Scholar
  256. Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200CrossRefGoogle Scholar
  257. Trojanowski J, Haider H, Hüttermann A (1984) Decomposition of 14C-labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Arch Microbiol 139:202–206CrossRefGoogle Scholar
  258. Tsimilli-Michael M, Eggenberg P, Biro B, Köves-Pechy K, Vörös I, Strasser RJ (2000) Synergist and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl Soil Ecol 15:169–182CrossRefGoogle Scholar
  259. van Breemen N, Finlay RD, Lundström US, Jongmans AG, Giesler R, Olsson M (2000a) Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49:53–67CrossRefGoogle Scholar
  260. van Breemen N, Lundström US, Jongmans AG (2000b) Do plants drive podzolization via rock-eating mycorrhizal fungi? Geoderma 94:163–171CrossRefGoogle Scholar
  261. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  262. Vázquez M Mar, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272CrossRefGoogle Scholar
  263. Voiblet C, Duplessis S, Encelot N, Martin F (2001) Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J 25:181–191PubMedCrossRefGoogle Scholar
  264. Vosátka M, Gryndler M (2000) Response of micropropagated potatoes transplanted to peat media to post-vitro inoculation with arbuscular mycorrhizal fungi and soil bacteria. Appl Soil Ecol 15:145–152CrossRefGoogle Scholar
  265. Wallander H (2000a) Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil 218:249–256CrossRefGoogle Scholar
  266. Wallander H (2000b) Use of strontium isotopes and foliar K content to estimate weathering of biotite induced by pine seedlings colonised by ectomycorrhizal fungi from two different soils. Plant Soil 222:215–229CrossRefGoogle Scholar
  267. Wallander H, Nylund J-E (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas on Pinus sylvestris L. New Phytol 119:405–411CrossRefGoogle Scholar
  268. Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9:25–32CrossRefGoogle Scholar
  269. Wallander H, Wickman T, Jacks G (1997) Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 196:123–131CrossRefGoogle Scholar
  270. Warnock AJ, Fitter AH, Usher MB (1982) The influence of a springtail, Folsomia candida (Insecta, Collembola) on the mycorrhizal association of leek, Allium porrum and the vesicular-arbuscular endophyte, Glomus fasciculatus. New Phytol 90:283–292CrossRefGoogle Scholar
  271. Wilkins DA (1991) The influence of sheathing (ecto-)mycorrhizas of trees on the uptake and toxicity of metals. Agric Ecosys Environ 35:245–260CrossRefGoogle Scholar
  272. Wu B, Nara K, Hogetsu T (1999) Competition between ectomycorrhizal fungi colonizing Pinus densiflora. Mycorrhiza 9:151–159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • R. Finlay
    • 1
  1. 1.Department of Forest Mycology & PathologySLUUppsalaSweden

Personalised recommendations