Advertisement

High-resolution trace and minor element compositions in deep-water scleractinian corals (Desmophyllum dianthus) from the Mediterranean Sea and the Great Australian Bight

  • Paolo Montagna
  • Malcolm McCulloch
  • Marco Taviani
  • Alessandro Remia
  • Greg Rouse
Part of the Erlangen Earth Conference Series book series (ERLANGEN)

Abstract

Zooxanthellate scleractinian corals have been shown to preserve important archives of seasonal variations of climate variables, such as sea surface temperature, salinity, and productivity. By analogy, the recognition of correlated chemical signals in azooxanthellate deep-water corals may provide an important new approach to help unravel the role of intermediate and deep waters in determining climate variability. A first step to determine the suitability of deep-water scleractinian corals as potential paleoceanographic-paleoclimatic tools requires the demonstration of coherent geochemical signals in their skeletons. With this in mind, trace and minor element ratios Sr/Ca, Mg/Ca, U/Ca, B/Ca, P/Ca, Ba/Ca and Mn/Ca have been measured in two deep-water solitary scleractinian corals (Desmophyllum dianthus) collected from Last Glacial submerged banks in the Mediterranean basin and in the Great Australian Bight. Most elements show distinct, highly correlated patterns of variation. Although preliminary, these results illustrate the potential use of trace and minor element concentrations in the deep-water scleractinian corals to provide new constraints on the composition and evolution of intermediate and deep waters and thus introduce new perspectives in paleoceanography, such as the assessment of changes in both deep-sea nutrient chemistry and ocean circulation.

Keywords

Desmophyllum dianthus deep-water corals trace element systematics laser ablation Mediterranean Sea Great Australian Bight paleoproductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins JF, Boyle EA (1999) Age screening of deep-sea corals and the deep ocean record of climate change at 15.4 ka. In: Abrantes F, Mix A (eds) Reconstructing Ocean History: A Window into the Future. Plenum, New York, pp 103–120Google Scholar
  2. Adkins JF, Boyle EA, Cheng H, Edwards RL, Druffel ERM (1995) Paleo-ventilation ages from paired C-14 and Th-230 dates of deep-sea corals. AGU Fall Meeting, pp 292Google Scholar
  3. Adkins JF, Cheng H, Boyle EA, Druffel ERM Edwards RL (1998) Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago. Science 280: 725–728CrossRefGoogle Scholar
  4. Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67: 1129–1143CrossRefGoogle Scholar
  5. Aharon P (1985) Carbon isotope record of late Quaternary coral reefs: possible index of sea surface paleoproductivity. AGU Geophys Monogr 32: 343–355Google Scholar
  6. Aharon P, Chappell J (1983) Carbon and oxygen isotope probes of reef environment histories. In: DJ Barnes (ed) Perspectives on Coral Reefs. Austral Inst Mar Sci, Townsville, pp 1–15Google Scholar
  7. Alibert C, MCCulloch MT (1997) Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: calibration of the thermometry and monitoring of ENSO. Paleoceanography 12: 345–363CrossRefGoogle Scholar
  8. Alibert C, Kinsley L, Fallon S, McCulloch MT, Berkelmans R, McAllister F (2003) Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim Cosmochim Acta 67: 231–246CrossRefGoogle Scholar
  9. Allen JRL, Wells JW (1962) Holocene coral banks and subsidence in the Niger Delta. J Geol 70: 381–397Google Scholar
  10. Allison N, Tudhope AW (1993) Nature and significance of geochemical variations in coral skeletons as determined by ion microprobe analysis. Proc 7th Int Coral Reef Symp, Guam, pp 173–178Google Scholar
  11. Allouc J (1987) Les paléocommunautés profondes sur fond rocheux du Pléistocène méditerranéen. Description et essai d’interprétation paléoécologique. Géobios 20: 241–263Google Scholar
  12. Amiel AJ, Friedman GM, Miller DS (1973) Distribution and nature of incorporation of trace elements in modern aragonite corals. Sedimentology 20: 47–64Google Scholar
  13. Beck JW, Edwards RL, Ito E, Taylor F, Récy J, Rougerie F, Joannot P, Henin C (1992) Seasurface temperature from coral skeleton strontium/calcium ratios. Science 257: 644–657Google Scholar
  14. Beck JW, Récy J, Taylor F, Edwards RL, Cabioch G (1997) Abrupt changes in the early Holocene tropical sea surface temperature derived form coral records. Nature 385: 705–707CrossRefGoogle Scholar
  15. Bernat M, Church T, Allegre C (1972) Barium and strontium concentrations in Pacific and Mediterranean sea water profiles by direct isotope dilution mass spectrometry. Earth Planet Sci Lett 16: 75–80CrossRefGoogle Scholar
  16. Bishop JKB (1988) The barite-opal-organic carbon association in oceanic particulate matter. Nature 332: 341–343CrossRefGoogle Scholar
  17. Bruland KW (1983) Trace element in sea-water. Chem Oceanogr 8: 157–220Google Scholar
  18. Cairns SD, Parker SA (1992) Review of the Recent Scleractinia of South Australia, Victoria, and Tasmania. Rec South Austral Mus Monogr Ser 3: 82 ppGoogle Scholar
  19. Cairns SD, Stanley GD (1981) Ahermatypic coral banks: living and fossil counterparts. Proc 4th Int Coral Reef Symp, Manila 1: 611–618Google Scholar
  20. Carriquiry JD, Risk MJ, Schwarcz HP (1994) Stable isotope geochemistry of corals from Costa Rica as proxy indicator of the El Niño/Southern Oscillation (ENSO). Geochim Cosmochim Acta 58: 335–351Google Scholar
  21. Chan LH, Drummond D, Edmond JM, Grant B (1977) On the barium data from the Atlantic GEOSECS expedition. Deep-Sea Res 24: 613–649Google Scholar
  22. Cheng H, Adkins JF, Edwards RL, Boyle EA (1995) 230Th dating of deep-sea solitary corals. AGU Fall Meeting: F292Google Scholar
  23. Cheng H, Adkins JF, Edwards RL, Boyle EA (2000) 230Th dating of deep-sea corals. Geochim Cosmochim Acta 64: 2401–2416CrossRefGoogle Scholar
  24. Cita MB, Benelli F, Biggiogero B, Chezar H, Colombo A, Fantini Sestini N, Freeman-Lynde R, Iaccarino S, Jadoul F, Legnani R, Malinverno A, Massiotta P, Paggi L, Premoli-Silva I (1980) Contribution to the geological exploration of the Malta Escarpment (eastern Mediterranean). Riv Ital Paleont 86: 317–356Google Scholar
  25. Cobb KM, Charles CD, Cheng H, Kastner M, Edwards RL (2003) U/Th-dating of young fossil corals from the central tropical Pacific. Earth Planet Sci Lett 210: 91–103CrossRefGoogle Scholar
  26. Cole JE (1994) Reconstructing and predicting climate variability. Geotimes Nov 1994: 12–15Google Scholar
  27. Cole JE, Fairbanks RG, Shen GT (1993) Recent variability in the Southern Oscillation isotopic results from the Tarawana Atoll coral. Science 260: 1790–1793Google Scholar
  28. Collier R, Edmond LM (1984) The trace element geochemistry of marine biogenic particulate matter. Progr Oceanogr 13: 113–119CrossRefGoogle Scholar
  29. Cuif JP, Dauphin Y (1998) Microstructural and physico-chemical characterization of “centers of calcification” in septa of some Recent scleractinian corals. Paläont Z 72: 257–270Google Scholar
  30. Cuif JP, Dauphin Y, Doucet J, Salome M, Susini J (2003) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67: 75–83CrossRefGoogle Scholar
  31. Dehairs F, Chesselet R, Jedwab J (1980) Discrete suspended particles of barite and the barium cycle in the open ocean. Earth Planet Sci Lett 49: 528–550CrossRefGoogle Scholar
  32. Delaney ML, Linn LJ, Druffel ERL (1993) Seasonal cycles of manganese and cadmium in coral from the Galapagos Islands. Geochim Cosmochim Acta 57: 347–354CrossRefGoogle Scholar
  33. Delibrias G, Taviani M (1985) Dating the death of Mediterranean deep-sea scleractinian corals. Mar Geol 62: 175–180Google Scholar
  34. De Villiers S, Shen GT, Nelson BK (1994) The Sr/Ca-temperature relationship in coralline aragonite: influence of variability in (Sr/Ca) seawater and skeletal growth parameters. Geochim Cosmochim Acta 58: 197–208CrossRefGoogle Scholar
  35. Di Geronimo I (1995) Benthic assemblage of the Plio-Quaternary soft and hard substrata in the Straits of Messina area. In: Guglielmo L, Manganaro A, De Domenico E (eds) The Straits of Messina Ecosystem. Proc Symp, Messina, 4–6 April 1991, pp 105–118Google Scholar
  36. Dunbar RB, Cole J (1993) Coral records of the ocean-atmosphere variability. NOAA Climate Global Change Program Spec Rep 10Google Scholar
  37. Dunbar RB, Wellington GM (1981) Stable isotopes in a branching coral monitor seasonal temperature variation. Nature 293: 453–455CrossRefGoogle Scholar
  38. Dunbar RB, Linsley BK, Wellington GM (1996) Eastern Pacific corals monitor El Niño/ Southern Oscillation, precipitation and sea surface temperature variability over the past 3 centuries. In: Jones PD, Bradley RS, Jouzel J (eds) Climatic fluctuations and forcing mechanisms of the last 2000 years. Springer, Berlin Heidelberg, pp 375–407Google Scholar
  39. Dymond J, Suess E, Lyle M (1992) Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography 7: 163–181Google Scholar
  40. Esat T, MCCulloch MT, Chappell J, Pillans B, Omura A (1999) Rapid fluctuations in sea level recorded at Huon Peninsula during the Penultimate Interglacial. Science 283: 197–201CrossRefGoogle Scholar
  41. Fallon SJ, MCCulloch MT, Van Woesik R, Sinclair DJ (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172: 221–238CrossRefGoogle Scholar
  42. Fosshagen A, Høisæter T (1992) The second Norwegian record of the deep-water coral, Desmophyllum cristagalli Milne-Edwards and Haime, 1848 (Cnidaria: Scleractinia). Sarsia 77: 291–292Google Scholar
  43. Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds) Ocean Margin Systems. Springer, Berlin Heidelberg, pp 365–385Google Scholar
  44. Freiwald A, Fosså JH, Grehan AJ, Koslow JA, Roberts M (2004) Cold-water coral reefs. UNEP-WCMC Rep, Biodiversity Ser 22: 1–84Google Scholar
  45. Froelich PN, Klinkhammer GP, Bender M., Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43: 1075–1090CrossRefGoogle Scholar
  46. Goldstein SJ, Lea DW, Chakraborty S, Kashgarian M, Murrell MT (2001) Uranium-series and radiocarbon geochronology of deep-sea corals: implications for Southern Ocean ventilation rates and the oceanic carbon cycle. Earth Planet Sci Lett 193: 167–182CrossRefGoogle Scholar
  47. Grottoli AG (1999) Variability of stable isotopes and maximum linear extension in reef-coral skeletons at Kaneohe Bay, Hawaii. Mar Biol 135: 437–449CrossRefGoogle Scholar
  48. Hart SR, Cohen AL (1996) An ion probe study of annual cycles of Sr/Ca and other trace elements in corals. Geochim Cosmochim Acta 60: 3075–3084CrossRefGoogle Scholar
  49. Heiss GA, Camoin GF, Eisenhauer A, Wischow D, Dullo W-Chr, Hansen B (1997) Stable isotopes and Sr/Ca-signals in corals from the Indian Ocean. Proc 8th Int Coral Reef Symp, Panama, pp 1713–1718Google Scholar
  50. Howarth RW, Jensen HS, Marino R, Postma H (1995) Transport to and processing of P in near-shore and oceanic water. In: Tiessen H (ed) Phosphorus in the global environment. John Wiley and Sons, pp 323–356Google Scholar
  51. Lazier AV, Smith JE, Risk MJ, Schwarcz P (1999) The skeletal structure of Desmophyllum cristagalli: the use of deep-water corals in sclerochronology. Lethaia 32: 119–130Google Scholar
  52. Lea D (1993) Constrains on the alkalinity and circulation of glacial circumpolar deep water from benthic foraminiferal barium. Global Biogeochem Cycles 7: 695–710Google Scholar
  53. Lea D, Boyle E (1989) Barium content of benthic foraminifera controlled by bottom-water composition. Nature 338: 751–753CrossRefGoogle Scholar
  54. Linn LJ, Delaney ML, Druffel ERM (1990) Trace metals in contemporary and seventeenthcentury Galapagos coral: records of seasonal and annual variations. Geochim Cosmochim Acta 54: 387–394CrossRefGoogle Scholar
  55. Lorens RB (1981) Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim Cosmochim Acta 45: 553–561CrossRefGoogle Scholar
  56. Marshall AT (1996) Calcification in hermatypic and ahermatypic corals. Science 271: 637–639Google Scholar
  57. Marshall JF, MCCulloch M (2002) An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim Cosmochim Acta 66: 3263–3280CrossRefGoogle Scholar
  58. MCCulloch MT, Gagan MK, Mortimer GE, Chivas AR, Isdale PJ (1994) A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Niño. Geochim Cosmochim Acta 58: 2747–2754Google Scholar
  59. MCCulloch M, Mortimer G, Esat T, Xianhua L, Pillans B, Chappell J (1996) High-resolution windows into early Holocene climate: Sr/Ca coral records from the Huon Peninsula. Earth Planet Sci Lett 138: 169–178CrossRefGoogle Scholar
  60. MCCulloch M, Fallon S, Wyndham T, Hendy E, Lough J, Barnes D (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421: 727–730CrossRefGoogle Scholar
  61. MCManus J, Berelson WM, Klinkhammer GP, Johnson KS, Coale KH, Anderson RF, Kumar N, Burdige DJ, Hammond DE, Brumsack HJ, McCorkle DC, Rushdi A (1998) Geochemistry of barium in marine sediments: implications for its use as a paleoproxy. Geochim Cosmochim Acta 62: 3453–3473CrossRefGoogle Scholar
  62. Mitsuguschi T, Matsumoto E, Abe O, Uchida T, Isdale PJ (1996) Ma/Ca thermometry in coral skeletons. Science 274: 961–963Google Scholar
  63. Montagna P, MCCulloch M, Mazzoli C, Silenzi S (2004a) B/Ca, Sr/Ca, U/Ca and Mg/Ca ratios of a non-tropical coral (Cladocora caespitosa) from the Northern Adriatic Sea (Mediterranean Sea) and their relationship to sea surface temperature. 10th Int Coral Reef Symp, June 28–July 2, Okinawa, Japan, pp 269Google Scholar
  64. Montagna P, MCCulloch M, Taviani M, Remia A, Mazzoli C (2004b) Laser ablation trace element systematics in deep-water corals (Desmophyllum dianthus) from the Mediterranean Sea and the Pacific Ocean. 8th Int Conf Paleoceanogr, Sept 5–10 2004, Biarritz, France, pp 184Google Scholar
  65. Mullins HT, Newton CR, Heath K, Vanburen HM (1981) Modern deep-water coral mounds north of Little Bahama Bank: criteria for recognition of deep-water coral bioherms in the rock record. J Sediment Petrol 51: 999–1013Google Scholar
  66. Newton CR, Mullins HT, Gardulski AF (1997) Coral mounds on the Western Florida Slope: unanswered questions regarding the development of deep-water banks. Palaios 2: 359–367Google Scholar
  67. Pingitore NE, Rangel Y, Kwarting A (1989) Barium variations in Acropora palmata and Montastrea annularis. Coral Reefs 8: 31–36CrossRefGoogle Scholar
  68. Reichart G-H, Jorissen F, Anschutz P, Mason PRD (2003) Single foraminiferal test chemistry records the marine environment. Geology 31: 355–358CrossRefGoogle Scholar
  69. Remia A, Taviani M (2004) Shallow-buried Pleistocene Madrepora-coral mounds on a muddy continental slope, Tuscan Archipelago, NE Tyrrhenian Sea. Facies 50, DOI 10.1007/s10347-004-0029-2Google Scholar
  70. Rickaby REM, Elderfield H (1999) Planktonic foraminiferal Cd/Ca: paleonutrients or paleotemperature? Paleoceanography 14: 293–303CrossRefGoogle Scholar
  71. Rollion-Bard C, Blamart D, Cuif JP, Juillet-Leclerc A (2003a) Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs 22: 405–415CrossRefGoogle Scholar
  72. Rollion-Bard C, Chaussidon M, France-Lanord C (2003b) pH control on oxygen isotopic composition of symbiotic corals. Earth Planet Sci Lett 215: 275–288CrossRefGoogle Scholar
  73. Schrag DP (1999) Rapid determination of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography 14: 97–102CrossRefGoogle Scholar
  74. Schröder-Ritzrau A, Mangini A, Lomitschka M (2003) Deep-sea corals evidence periodic reduced ventilation in the North Atlantic during the LMG/Holocene transition. Earth Planet Sci Lett 216: 399–410Google Scholar
  75. Seguenza G (1864) Disquisizioni paleontologiche intorno ai Corallarii fossili delle rocce terziarie del distretto di Messina. Mem R Acc Sci Torino (ser 2) 21: 399–560Google Scholar
  76. Shen GT, Dunbar RB (1995) Environmental controls on uranium in reef corals. Geochim Cosmochim Acta 59: 2009–2024CrossRefGoogle Scholar
  77. Shen GT, Campbell TM, Dunbar RB, Wellington GM, Colgan MW, Glynn PW (1991) Paleochemistry of manganese in corals from the Galapagos Islands. Coral Reefs 10:91–100CrossRefGoogle Scholar
  78. Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407: 859–869CrossRefGoogle Scholar
  79. Sinclair DJ, Kinsley LPJ, McCulloch M (1998) High-resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62: 1889–1901CrossRefGoogle Scholar
  80. Smith SV, Buddemeier RW, Redalje RC, Houck JE (1979) Strontium-calcium thermometry in coral skeletons. Science 204: 404–406Google Scholar
  81. Smith JE, Risk MJ, Schwarcz HP, McConnaughey T (1997) Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals. Nature 386: 818–820CrossRefGoogle Scholar
  82. Smith JE, Schwarcz HP, Risk MJ, McConnaughey T, Keller N (2000) Paleotemperatures from deep-sea corals: overcoming “vital effects”. Palaios 15: 25–32Google Scholar
  83. Sorauf JE, Jell JS (1977) Structure and incremental growth in the ahermatypic coral Desmophyllum cristagalli from the North Atlantic. Paleontology 20: 1–9Google Scholar
  84. Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration in foraminiferal carbon and oxygen isotopes. Nature 390: 497–500CrossRefGoogle Scholar
  85. Squires DF (1965) Deep-water coral structure on the Campbell Plateau, New Zealand. Deep-Sea Res 12: 785–788Google Scholar
  86. Stanley GD, Cairns SD (1988) Constructional azooxanthellate coral communities: an overview with implications for the fossil record. Palaios 3: 233–242Google Scholar
  87. Taviani M, Colantoni P (1979) Thanatocoenoses würmiennes associées aux coraux blancs. Rapp Comm Int Mer Médit 25/26: 141–142Google Scholar
  88. Taviani M, Colantoni P (1984) Paléobiocenoses profondes a scléractiniaires sur l’escarpement de Malte-Syracuse (Mer Méditerranée): leur structure, leur âge et leur signification. Rev Inst Franc Pétr 39: 547–552Google Scholar
  89. Taviani M, Remia A (2001) I coralli del buio: archivi climatici degli oceani passati. Ricerca Futuro 18: 28–30Google Scholar
  90. Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Deep-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 137–156Google Scholar
  91. Tesoriero AJ, Pankow JF (1996) Solid solution partitioning of Sr2+, Ba2+ and Cd2+ to calcite. Geochim Cosmochim Acta 60: 1053–1063CrossRefGoogle Scholar
  92. Tudhope AW, Lea D, Shimmield GB, Chilcott CP, Head S (1996) Monsoon climate and Arabian Sea coastal upwelling recorded in massive corals from Southern Oman. Palaios 11: 347–361Google Scholar
  93. Tursi A, Mastrototaro F, Matarrese A, Maiorano P, D’Onghia G (2004) Biodiversity of the white coral reefs in the Ionian Sea (Central Mediterranean). Chem Ecol 20(Suppl 1):S107–S116Google Scholar
  94. Veron JEN (1995). Corals in space and time. Southwood Press, 321 ppGoogle Scholar
  95. Vertino A (2003) Sclerattiniari Plio-Pleistocenici ed attuali del Mediterraneo (Sistematica, Biostratinomia e Paleoecologia). Unpubl PhD thesis, Univ Messina, 306 ppGoogle Scholar
  96. Watson EB (2004) A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals. Geochim Cosmochim Acta 68: 1473–1488CrossRefGoogle Scholar
  97. Weber JN (1973) Deep-sea ahermatypic scleractinian corals: isotopic composition of the skeleton. Deep-Sea Res 20: 901–909Google Scholar
  98. Wellington GM, Dunbar RB (1995) Stable isotope signatures of ENSO in eastern Pacific (Panama) corals. Coral Reefs 14: 5–25Google Scholar
  99. Zibrowius H (1977) Taxonomy in ahermatypic scleractinian corals. Palaeont Amer 54: 80–85Google Scholar
  100. Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mém Inst Océanogr Monaco 11: 284 ppGoogle Scholar
  101. Zibrowius H (1981) Thanatocoenose pléistocène profonde à spongiaires et scléractiniaires dans la fosse Hellénique. J Étud Syst Évol Biogéogr Médit Cagliari, 13–14 octobre 1980, CIESM Monaco, pp 133–136Google Scholar
  102. Zibrowius H (1987) Scléractiniaires et Polychètes Serpulidae des faunes bathyales actuelle et plio-pléistocène de Méditerranée. Doc Trav IGAL 11: 255–257Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Paolo Montagna
    • 1
    • 2
  • Malcolm McCulloch
    • 2
  • Marco Taviani
    • 3
  • Alessandro Remia
    • 3
  • Greg Rouse
    • 4
  1. 1.Department of Mineralogy and PetrologyUniversity of PaduaItaly
  2. 2.Research School of Earth SciencesAustralian National UniversityCanberraAustralia
  3. 3.ISMAR-Marine Geology DivisionCNRBolognaItaly
  4. 4.South Australian MuseumAdelaideAustralia

Personalised recommendations