C and O isotopes in a deep-sea coral ( Lophelia pertusa) related to skeletal microstructure

  • Dominique Blamart
  • Claire Rollion-Bard
  • Jean-Pierre Cuif
  • Anne Juillet-Leclerc
  • Audrey Lutringer
  • Tjeerd C. E. van Weering
  • Jean-Pierre Henriet
Part of the Erlangen Earth Conference Series book series (ERLANGEN)

Abstract

Lophelia pertusa is a deep-sea scleractinian coral (azooxanthellate) found on the continental margins of the major world oceans. Built of aragonite it can be precisely dated and measured for stable isotope composition (C–O) to reconstruct past oceanic conditions. However, the relation between stable isotope and skeleton microstructures, i.e. centres of calcification and surrounding fibres, is crucial for understanding the isotopic patterns. Values for δ18O and δ13C in Lophelia pertusa were determined at a micrometer scale using an ion microprobe (SIMS - Secondary Ion Mass Spectrometry). In this coral species, centres of calcification are large (50 µm) and arranged in lines. The centres of calcification have a restricted range of variation in δ18O (−2.8 ± 0.3 ‰ (V-PDB)), and a larger range in δ13C (14.3 to 10.9 ‰ (V-PDB)). Surrounding skeletal fibres exhibit large isotopic variation both for C and O (up to 12 ‰) and δ13C and δ18O are positively correlated. The C and O isotopic composition of the centres of calcification deviate from this linear trend at the lightest δ18O values of the surrounding fibres. The fine-scaled variation of δ18O is probably the result of two processes: (1) isotopic equilibrium calcification with at least 1 pH unit variation in the calcification fluid and (2) kinetic fractionation. The apparent δ13C disequilibrium in Lophelia pertusa may be the result of mixing between depleted δ13C metabolic CO2 (respiration) and DIC coming directly from seawater. This study underlines the close relationship between microstructure and stable isotopes in corals. This relationship must also be taken into consideration for major elements like Mg and trace elements (U-Sr-Ba) increasing the reliability of the geochemical tools used in paleoceanography.

Keywords

Deep-sea corals SIMS stable isotopes isotopic disequilibrium Lophelia pertusa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins JF, Cheng H, Boyle EA, Druffel ERM, Edwards RL (1998) Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago. Science 280: 725–728CrossRefGoogle Scholar
  2. Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67: 1129–1143CrossRefGoogle Scholar
  3. Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J Exper Mar Biol Ecol 288: 1–15Google Scholar
  4. Al-Moghrabi SM, Al-Horani FA, de Beer D (2001) Calcification by the scleractinian coral Galaxea fascicularis: direct measurements on calicoblastic layer using microsensors. Proc 8th Int Symp Biomineralization, p 45Google Scholar
  5. Bett B (2001) UK Atlantic margin environmental survey: introduction and overview of bathyal benthic ecology. Cont Shelf Res 21: 917–956CrossRefGoogle Scholar
  6. Blamart D, van Weering TCE, Ayliffe L, Labeyrie L, Lutringer, A, Vonhof HB, Ganssen G (2000) Modern NE Atlantic Ocean cold water coral characteristics. EOS Trans AGU, 81: 640Google Scholar
  7. Cheng H, Adkins JF, Edwards RL, Boyle EA (2000) U-Th dating of deep-sea corals. Geochim Cosmochim Acta 64: 2401–2416CrossRefGoogle Scholar
  8. Cohen A, Layne GD, Hart SR, Lobel PS (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16: 20–26CrossRefGoogle Scholar
  9. Cuif JP, Dauphin Y (1998) Microstructural and physico-chemical characterisation of centres of calcification in septa of some scleractinian corals. Paläont Z 72: 257–270Google Scholar
  10. Cuif JP, Dauphin Y, Doucet J, Salome M, Susini J (2003) XANES mapping of organic sulphate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67: 75–83CrossRefGoogle Scholar
  11. De Chambost E (1997) User’s Guide for Multicollector Caméca IMS 1270. Caméca, Courbevoie, FranceGoogle Scholar
  12. Deloule E, Chaussidon M, Allé P (1992) Instrumental limitations for isotope measurements with a Caméca IMS-3f ion microprobe: Example of H, B, S and Sr. Chem Geol 101: 187–192CrossRefGoogle Scholar
  13. Emiliani C, Hudson JH, Shinn EA, George RY (1978) Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau. Science 202: 627–629Google Scholar
  14. Frank N, Paterne M, Ayliffe LK, van Weering T, Henriet J P, Blamart D (2004) Eastern North Atlantic deep-sea corals: Tracing upper intermediate water Δ14C during the Holocene. Earth Planet Sci Lett 219: 297–309CrossRefGoogle Scholar
  15. Frank N, Lutringer A, Paterne M, Blamart D, Henriet JP, van Rooij D, van Weering T (2005) Deep-water corals of the northeastern Atlantic margin: carbonate mound evolution and upper intermediate water ventilation during the Holocene. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 113–133Google Scholar
  16. Freiwald A (2002). Reef-forming cold-water corals. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds) Ocean Margin Systems. Springer, Berlin Heidelberg, pp. 365–385Google Scholar
  17. Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund, West Finnmark, northern Norway. SEPM Spec Publ 56: 141–161Google Scholar
  18. Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exper Biol 203: 3445–3457Google Scholar
  19. Gaffey S (1988) Water in skeletal carbonates. J Sediment Petrol 58: 397–414Google Scholar
  20. Gladfelter EH (1982) Skeletal development in Acropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs 1: 45–51Google Scholar
  21. Grehan AJ, Unnithan V, Olu-Le Roy K, Opderbecke J (in press) Fishing impacts on Irish deep-water coral reefs: making the case for coral conservation. In: Barnes P, Thomas J (eds) Proceedings of the Symposium on Effects of Fishing Activities on Benthic Habitats: Linking Geology, Biology, Socioeconomics and Management. Amer Fish SocGoogle Scholar
  22. Hidaka M (1991) Fusiform and needle-shaped crystals found on the skeleton of a coral, Galaxea fascicularis. In: Sugo S, Nakaharo H (eds) Mechanism and physiology of biomineralization in biological systems. Springer, Berlin Heidelberg, pp 139–143Google Scholar
  23. Ireland T (1995) Ion microprobe mass spectrometry: techniques and applications in cosmochemistry, geochemistry, and geochronology. Adv Anal Geochem 2: 1–118Google Scholar
  24. Land LS, Lang JC, Barnes DJ (1975) Extension rate: a primary control on the isotopic composition of West Indian (Jamaican) scleractinian reef coral skeletons. Mar Biol 33: 221–233CrossRefGoogle Scholar
  25. Le Tissier M d’A (1988) Diurnal pattern of skeleton formation in Pocillopora damicornis (Linnaeus). Coral Reefs 7: 81–88CrossRefGoogle Scholar
  26. Lutringer A (2002) Validation d’un nouvel outil pour le traçage de la variabilité des eaux intermediaries. Les coraux profonds. Master Univ Paris XI, 33 ppGoogle Scholar
  27. Mahon KI, Harrison TM, McKeegan KD (1998) The thermal and cementation histories of a sandstone petroleum reservoir, Elk Hills, California. Part 2: In situ oxygen and carbon isotopic results. Chem Geol 152: 257–271Google Scholar
  28. Malakoff D (2003) Cool corals become a hot topic. Science 299: 195Google Scholar
  29. McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta 53: 163–171Google Scholar
  30. McConnaughey T (2003) Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models. Coral Reefs 22: 316–327CrossRefGoogle Scholar
  31. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18: 849–857CrossRefGoogle Scholar
  32. Meibom A, Stage M, Wooden J, Constantz BR, Dunbar RB, Owen A, Grumet N, Bacon CR, Chamberlain CP (2003) Monthly Strontium/Calcium oscillations in symbiotic coral aragonite: biological effects limiting the precision of the paleotemperature proxy. Geophys Res Lett 33: 1418. DOI 1029/2002GL016864Google Scholar
  33. Mikkelsen N, Erlenkeuser H, Killingley JS, Berger WH (1982) Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11: 163–171Google Scholar
  34. Mortensen PB, Rapp HT (1998) Oxygen and carbon isotope ratios related to growth line pattern in skeletons of Lophelia pertusa (L) (Anthozoa, Scleractinia): implications for determination of linear extension rates. Sarsia 83: 433–446Google Scholar
  35. Newton CR, Mullins HT, Gardulski AF, Hine AC, Dix GR (1987) Coral mounds on the West Florida slope: unanswered questions regarding the development of deep-water banks. Palaios 2: 359–367Google Scholar
  36. Ogilvie M (1896) Microscopic and systematic study of madreporarian types of corals. Phil Trans R Soc London 187(B): 83–345Google Scholar
  37. Rollion-Bard C (2001) Variabilité des isotopes de l’oxygène dans les coraux Porites: développement et implications des microanalyses d’isotopes stables (B, C et O) par sonde ionique. PhD Thesis, Inst Polytech Lorraine, Nancy, France, 165ppGoogle Scholar
  38. Rollion-Bard C, Blamart D, Cuif JP, Juillet-Leclerc A (2003a) Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs 22: 405–415CrossRefGoogle Scholar
  39. Rollion-Bard C, Chaussidon M, France-Lanord C (2003b) pH control on oxygen isotopic composition of symbiotic corals. Earth Planet Sci Lett 215: 275–218CrossRefGoogle Scholar
  40. Slodzian G, Daigne B, Girard F, Boust F (1987) High sensitivity and high spatial resolution ion probe instrument. In: Benninghoven A, Huber AM, Werner HW (eds) Secondary Ion Mass Spectrometry SIMSVI. Wiley & Sons, Chichester, pp 189–192Google Scholar
  41. Smith JE, Risk MJ, Schwarcz HP, McConnaughey TA (1997) Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals. Nature 386: 818–820CrossRefGoogle Scholar
  42. Smith JE, Schwarcz HP, Risk MJ, McConnaughey TE, Keller N (2000) Paleotemperatures from deep-sea corals: overcoming “vital effects”. Palaios 15: 25–32Google Scholar
  43. Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390: 497–500CrossRefGoogle Scholar
  44. Spiro B, Roberts M, Gage J, Chenery S (2000) 18O/16O and 13C/12C in ahermatypic deep-sea water coral Lophelia pertusa from the North Atlantic: a case of disequilibrium isotope fractionation. Rapid Commun Mass Spectrom 14: 1332–1336CrossRefGoogle Scholar
  45. Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci Rev 19: 51–80CrossRefGoogle Scholar
  46. Urey HC, Lowenstam HA, Epstein S, McKinney CR (1951) Measurements of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Bull Geol Soc Am 62: 399–416Google Scholar
  47. Usdowski E, Hoefs J (1993) Oxygen isotope exchange between carbonic acid, bicarbonate, carbonate, and water: a re-examination of the data of McCrea (1950) and an expression for the overall partitioning of oxygen isotopes between the carbonate species and water. Geochim Cosmochim Acta 57: 3815–3818.CrossRefGoogle Scholar
  48. Usdowski E, Michaelis J, Böttcher ME, Hoefs J (1991) Factors for the oxygen isotope equilibrium between aqueous and gaseous CO2, carbonic acid, bicarbonate, carbonate, and water (19°C). Z Phys Chem 170: 237–249Google Scholar
  49. Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCulloch MT (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta 55: 2901–2910Google Scholar
  50. Van Weering T, shipboard scientific party (1999) Shipboard cruise report R.V. Pelagia 64PE143: A survey of carbonate mud mounds of Porcupine Bight and S. Rockall Trough margins. NIOZ, Texel, 82 ppGoogle Scholar
  51. Wainwright SA (1963) Skeletal organization in the coral Pocillopora damicornis. Quart J Microscop Sci 104:169–183Google Scholar
  52. Weber JN (1973) Deep-sea scleractinian coral: isotopic composition of skeleton. Deep-Sea Res 20: 901–909Google Scholar
  53. Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100: 207–248CrossRefGoogle Scholar
  54. Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on Invertebrate Paleontology. F. Coelenterata. Geol Soc Amer, Univ Kansas Press, Lawrence, pp 353–367Google Scholar
  55. Wilson JB (1979) The distribution of the coral Lophelia pertusa (L.) [L. prolifera (Pallas)] in the North East Atlantic. J Mar Biol Assoc UK 59: 149–164Google Scholar
  56. Zeebe RE (1999) An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochim Cosmochim Acta 63: 2001–2007CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dominique Blamart
    • 1
  • Claire Rollion-Bard
    • 2
  • Jean-Pierre Cuif
    • 3
  • Anne Juillet-Leclerc
    • 1
  • Audrey Lutringer
    • 1
  • Tjeerd C. E. van Weering
    • 4
  • Jean-Pierre Henriet
    • 5
  1. 1.Laboratoire des Sciences du Climat et de l’Environnement (LSCE) Unité mixte de Recherche CEA-CNRSGif-sur-Yvette CedexFrance
  2. 2.CRPG-CNRSVandoeuvrelès-NancyFrance
  3. 3.Université de Paris XI, Faculté des SciencesOrsay CédexFrance
  4. 4.Koninklijk Nederlands Instituut voor Onderzoek der Zee (NIOZ)Den Burg, TexelThe Netherlands
  5. 5.Renard Centre of Marine GeologyGent UniversityGentBelgium

Personalised recommendations