Calcifying extracellular mucus substances (EMS) of Madrepora oculata — a first geobiological approach

  • Joachim Reitner
Part of the Erlangen Earth Conference Series book series (ERLANGEN)


Colonial non-zooxanthellate corals from deep-water coral reefs, Lophelia pertusa and Madrepora oculata, produce large amounts of extracellular mucus (EMS). This mucus has various functions, e.g., an antifouling capability protecting the coral skeleton from attacks of endolithic and boring organisms. Both corals show thick epithecal and exothecal skeletal parts with a clear lamellar growth pattern. The formation of the epitheca is unclear. It is supposed that the EMS play a central role during the calcification process of the epithecal skeletal parts. Staining with the fluorochrome tetracycline has shown an enrichment of Ca2+ ions in the mucus. In order to investigate this hypothesis, the protein content of the mucus and the intracrystalline organic matter from newly formed epithecal aragonite of Madrepora oculata was determined via sodium dodecyl sulfate (SDS) gel electrophoresis. Identical band patterns within both substances could be detected, one around 45 kDa molecular weight and a cluster around 30–35 kDa molecular weight. The occurrence of identical protein patterns within the mucus and in the newly formed aragonite confirms the idea that the mucus plays an important role during the organomineralization of the coral epitheca.


Biomineralisation extracellular mucus martix proteins Madrepora SDS gel electrophoresis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralisation. Proc Natl Acad Sci USA 82: 4110–4114Google Scholar
  2. Addadi L, Weiner S (1992) Kontroll-und Designprinzipien bei der Biomineralisation. Angew Chem 104: 159–176Google Scholar
  3. Allemand D, Tambutté È, Girard J-P, Jaubert J (2001) Organic matrix synthesis in the scleractinian coral Stylophora pistillata: role in biomineralization and potential target of the organotin tributyltin. J Exp Biol: 201: 2001–2009Google Scholar
  4. Arp G, Reimer A, Reitner J (2003) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. J Sediment Res 73: 105–127Google Scholar
  5. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254CrossRefGoogle Scholar
  6. Bryan W, Hill D (1941) Spherulitic crystallization as a mechanism of skeletal growth in the Hexacorals. Proc R Soc Queensland 52: 78–91Google Scholar
  7. Constantz BR (1986) Coral skeleton construction: a physiochemically dominated process. Palaios 1: 152–157Google Scholar
  8. Constantz BR, Meike A (1989) Calcite centres of calcification in Mussa angulosa (Scleractinia). In: Crick RE (ed) Origin, Evolution and modern Aspects of Biomineralization in Plants and Animals. Plenum Press, New York, pp 201–207Google Scholar
  9. Constantz BR, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool 248: 253–258CrossRefGoogle Scholar
  10. Cuif J-P, Dauphin Y (1998) Microstructural and physico-chemical characterization of “centers of calcification” in septa of some Recent scleractinian corals. Paläont Z 72: 257–270Google Scholar
  11. Cuif J-P, Dauphin Y, Denis A, Gautret P (1996) The organomineral structure of coral skeletons: a potential source of new criteria for scleractinian taxonomy. Bull Inst Océanogr Monaco Spec Issue 14: 359–367Google Scholar
  12. Cuif J-P, Dauphin Y, Gautret P (1999) Compositional diversity of soluble mineralizing matrices in some recent coral skeletons compared to fine-scale growth structures of fibres: discussion of consequences for biomineralization and diagenesis. Int J Earth Sci 88: 582–592CrossRefGoogle Scholar
  13. Cuif J-P, Gautret P (1995) Gluides et proteins de la matrice soluble des biocristaux de scleractiniaires acroporides. CR Acad Sci Paris 320 Ser IIa: 273–278Google Scholar
  14. Dauphin Y, Cuif J-P (1997) Isoelectric properties of the soluble matrices in relation to the chemical composition of some scleractinian skeletons. Electrophoresis 18: 1180–1183CrossRefGoogle Scholar
  15. Defarge C, Trichet J (1995) From biominerals to “organominerals”: the example of the modern lacustrine calcareous stromatolites from Polynesian atolls. Bull Inst Océanogr Monaco Spec Issue 14: 265–271Google Scholar
  16. Freiwald A, Wilson JB (1998) Taphonomy of modern deep, cold-temperate water coral reefs. Hist Biol 13: 37–52Google Scholar
  17. Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund. SEPM Spec Publ 56: 141–161Google Scholar
  18. Freiwald A, Hühnerbach V, Lindberg B, Wilson JB, Campbell J (2002) The Sula Reef Complex, Norwegian Shelf. Facies 47: 179–200Google Scholar
  19. Gautret P, Cuif, J-P, Freiwald A (1997) Composition of soluble mineralizing matrices in zooxanthellate and non-zooxanthellate scleractinian corals: biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies 36: 189–194Google Scholar
  20. Gladfelter EH (1984) Skeletal development in Acropora cervicornis. A comparison of monthly rates of linear extension and calcium carbonate accretion measured over a year. Coral Reefs 3: 51–57CrossRefGoogle Scholar
  21. Goreau T (1956) Histochemistry of mucopolysaccharide-like substances and alkaline phosphatase in Madreporaria. Nature 177: 1029–1030Google Scholar
  22. Gunthorpe ME, Sikes CS, Wheeler AP (1990) Promotion and inhibition of calcium carbonate crystallization in vitro by matrix protein from blue crab exoskeleton. Biol Bull 179: 191–200Google Scholar
  23. Johnston I (1980) The ultrastructure of skeletogenesis in hermatypic corals. Int Rev Cyt 67: 171–214CrossRefGoogle Scholar
  24. Lange R, Bergbauer M, Szewzyk U, Reitner J (2001) Soluble proteins control growth of skeleton crystals in three coralline demosponges. Facies 45: 195–202Google Scholar
  25. Milliman JD (1974) Marine carbonates. In: Milliman JD, Müller G, Förstner U (eds) Recent sedimentary Carbonates. Springer, BerlinGoogle Scholar
  26. Mitterer RM (1978) Amino acid composition and metal binding capability of the skeletal protein of corals. Bull Mar Sci 28: 173–180Google Scholar
  27. Reitner J (1993) Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia). Formation and concepts. Facies 29: 3–39Google Scholar
  28. Reitner J, Hoffmann F (2003) Schwämme in Kaltwasser-Korallenriffen. Kleine Senckenberg-Reihe 45: 75–87Google Scholar
  29. Reitner J, Gautret P, Marin F, Neuweiler F (1995) Automicrites in a modern marine microbialite. Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). Bull Inst Océanogr Monaco Spec Issue 14: 237–263Google Scholar
  30. Reitner J, Wörheide G, Lange R, Schumann-Kindel G (2001) Coralline demosponges — a geobiological portait. Bull Tohoku Univ Mus 1: 219–235Google Scholar
  31. Stolarski J (2003) Three-dimensional micro-and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol Pol 48: 497–530Google Scholar
  32. Trichet J, Defarge C (1995) Non-biologically supported organomineralisation. Bull Inst Océanogr Monaco Spec Issue 14: 203–236Google Scholar
  33. Weiner S, Traub W, Lowenstam HA (1983) Organic matrix in calcified exoskeletons. In: Westbroek P, de Jong EW (eds) Biomineralization and Biological Metal Accumulation. Reidel, Amsterdam, pp 205–224Google Scholar
  34. Wheeler AP, George JW, Evans CA (1981) Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science 212: 1397–1398Google Scholar
  35. Wilbur KM, Simkiss K (1979) Carbonate turnover and depostion by Metazoa. In: Trudinger PA, Swaine DJ (eds) Studies in Environmental Sciences. Biochemical Cycling of Mineral-forming Elements. Elsevier, Amsterdam, pp 69–106Google Scholar
  36. Wörheide G, Gautret P, Reitner J, Böhm F, Joachimski MM, Thiel V, Michaelis W, Massault M (1997) Basal skeletal formation, role and preservation of intracrystalline organic matrices, and isotopic record in the coralline sponge Astrosclera willeyana Lister, 1900. Bol R Soc Esp Hist Nat (Sec Geol) 91: 355–374Google Scholar
  37. Young SD (1971) Organic material from scleractinian coral skeleton. 1. Variation in composition between several species. Cop Biochem Physiol 40B: 113–120Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joachim Reitner
    • 1
  1. 1.Geobiology-GZGGöttingen UniversityGöttingenGermany

Personalised recommendations