Mapping of Lophelia reefs in Norway: experiences and survey methods

  • Jan Helge Fosså
  • Björn Lindberg
  • Ole Christensen
  • Tomas Lundälv
  • Ingvald Svellingen
  • Pål B. Mortensen
  • John Alvsvåg
Part of the Erlangen Earth Conference Series book series (ERLANGEN)


The Institute of Marine Research commenced a program for mapping and assessment of Lophelia reefs in 1997. It was initiated by reports from fishermen claiming that bottom trawling damaged deep-water coral reefs. The strategy was to survey coral sites reported in the literature and by the fishermen. This has provided an extensive database of coral occurrences, both damaged and undamaged sites. A number of major coral reefs have been identified, which has provided a better understanding of the morphology of Lophelia reefs and where they are likely to occur. We are now able to identify potential coral areas by analysing seafloor topography on maps. Fast and reliable ground-truthing methods using simple and inexpensive systems have been developed. Mapping and quantification of corals demand more advanced instrumentation, such as singlebeam and multibeam echo sounders in combination with data processing software allowing coral reefs to be detected in real time. Systems providing real time presentation of multibeam data are especially useful in combination with Remotely Operated Vehicle (ROV) positioned with acoustic navigation systems. We suggest the following mapping procedure: 1) acoustical reef detection followed by multibeam mapping, preferably along with collection of seismic reflection data. 2) ground-truthing with a tethered video camera platform or an ROV. The position of the observation platform is plotted online and draped on the multibeam maps, either in 2D or 3D mode. Examples from the reefs on Sula, Røst, Træna and Fugløy are given.


Deep-water corals cold-water corals reefs Lophelia mapping detection ground-truthing monitoring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous (1995) Seatech International Ltd. Aberdeen, Scotland 1995. RoxMap, RoxAnn Information Display. Manual for RoxMap Scientific Version 1.00Google Scholar
  2. Bodholt H, Nes H, Solli H (1989) A new echo-sounder system. Proc UK Inst Acoust 11: 123–30Google Scholar
  3. Bunchuk AV, Zhitkovskii YY (1980) Sound scattering by the ocean bottom in shallow-water regions. Sov Phys Acoust 26: 363–370Google Scholar
  4. Buhl-Mortensen L, Mortensen PB (2004) Crustaceans associated with the deep-water gorgonian corals Paragorgia arborea (L., 1758) and Primnoa resedaeformis (Gunnerus 1763). J Nat Hist 38: 1233–1247CrossRefGoogle Scholar
  5. Buhl-Mortensen L, Mortensen PB (2005) Distribution and diversity of species associated with deep-sea gorgonian corals off Atlantic Canada. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 849–879Google Scholar
  6. Burdon-Jones C, Tambs-Lyche H (1960) Observations on the fauna of the North Brattholmen stone-coral reef near Bergen. Årb Univ Bergen, Mat-Naturvitensk Ser 1960: 1–24Google Scholar
  7. Burns DR, Queen CB, Sisk H, Mullarkey W, Chivers RC (1989) Rapid and convenient acoustic seabed discrimination. Proc UK Inst Acoust 11: 169–178Google Scholar
  8. Costello MJ, McCrea M, Freiwald A, Lundälv T, Jonsson L, Bett BJ, van Weering T, de Haas H, Roberts JM, Allen D (2005) Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 771–805Google Scholar
  9. Dons C (1944) Norges korallrev. K Norske Vidensk Selsk Forh 16: 37–82Google Scholar
  10. Dorschel B, Hebbeln D, Rüggeberg A, Dullo W-Chr (in press) Carbonate budget of a deepwater coral mound: Propeller Mound, Porcupine Seabight. Int J Earth SciGoogle Scholar
  11. Duineveld G, Lavaleye M, Berghuis E (2004) Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Mar Ecol Prog Ser 277: 13–23Google Scholar
  12. Foote KG, Knudsen HP, Korneliussen RJ, Nordbø PE, Røang K (1991) Postprocessing system for echo sounder data. J Acoust Soc Amer 90: 37–47Google Scholar
  13. Fosså JH, Alvsvåg J (2003) Kartlegging og overvåkning av korallrev. In: Asplin L, Dahl E (eds) Havets Miljø 2003. Fisken Havet Spec Issue 2: 62–67Google Scholar
  14. Fosså JH, Furevik D, Mortensen PB (1997) Methods for detecting and mapping of Lophelia coral banks: preliminary results. ICES Benthos Ecology Working Group, Gdynia, Poland, 23–26 Apr. 1997, 17 ppGoogle Scholar
  15. Fosså JH, Mortensen PB (1998) Artsmangfoldet på Lophelia-korallrev og metoder for kartlegging og overvåkning. Fisken Havet 17: 95 ppGoogle Scholar
  16. Fosså JH, Mortensen PB, Furevik D (2000) Lophelia korallrev langs norskekysten. Forekomst og tilstand. Fisken Havet 2: 94 ppGoogle Scholar
  17. Fosså JH, Mortensen PB, Furevik D (2002) The deep-water coral Lophelia pertusa in Norwegian waters; distribution and fishery impacts. Hydrobiologia 471: 1–12Google Scholar
  18. Freiwald, A (1998) Geobiology of Lophelia pertusa (Scleractinia) reefs in the North Atlantic. Habilitation thesis, Univ BremenGoogle Scholar
  19. Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds.) Ocean Margin Systems. Springer, Berlin, pp 365–385Google Scholar
  20. Freiwald A, Hühnerbach V, Lindberg B, Wilson JB, Campbell J (2002) The Sula reef complex, Norwegian shelf. Facies 47: 179–200Google Scholar
  21. Freiwald A, Fosså JH, Grehan A, Koslow T, Roberts JM (2004) Cold-water coral reefs. UNEP-WCMC, Cambridge, UK, Biodivers Ser 22: 84 ppGoogle Scholar
  22. Heath R (2003) Cabled seafloor observatories-potential and challenges. Geophys Res Abstr 5: 04645Google Scholar
  23. Hovland M, Mortensen PB, Thomsen E, Brattegard T (1997) Substratum-related ahermatypic corals on the Norwegian continental shelf. Proc 8th Int Coral Reef Symp, Panama 1996, 2: 1203–1206Google Scholar
  24. Hovland M, Mortensen PB (1999) Norske korallrev og prosesser ihavbunnen. John Grieg, BergenGoogle Scholar
  25. Husebø Å, Nøttestad L, Fosså JH, Furevik DM, Jørgensen SB (2002) Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia 471: 91–99Google Scholar
  26. Jensen A, Frederiksen R (1992) The fauna associated with the bank-forming deepwater coral Lophelia pertusa (Scleractinia) on the Faroe shelf. Sarsia 77: 53–69Google Scholar
  27. Kenny AJ, Andrulewich H, Bokuniewicz, Boyd SE, Breslin J, Brown C, Cato I, Costelloe J, Desprez M, Dijkshoorn C, Fader G, Courtney R, Freeman S, de Groot B, Galtier L, Helmig S, Hillewaert H, Krause JC, Lauwaert B, Leuchs H, Markwell G, Mastowske M, Murray AJ, Nielsen PE, Ottesen D, Pearson R, Rendas MJ, Rogers S, Schuttenhelm R, Stolk A, Side J, Simpson T, Uscinowicz S, Zeiler M (2000) An overview of seabed mapping technologies in the context of marine habitat classification. ICES ASC September 2000: Theme session on classification and mapping of marine habitatsGoogle Scholar
  28. Knudsen HP (1990) The Bergen Echo Integrator: an introduction. J Cons Int Explor Mer 47: 167–174Google Scholar
  29. Kongsberg Simrad (2001) Operator manual for Triton. Horten, Norway, 116 ppGoogle Scholar
  30. Korneliussen R (1993) Advances in Bergen Echo Integrator. ICES C.M.1993/B: 28 (mimeo)Google Scholar
  31. Korneliussen RJ, Ona E (2002) An operational system for processing and visualising multifrequency acoustic data. ICES J Mar Sci 59: 293–313CrossRefGoogle Scholar
  32. Laberg JS, Vorren TO (2000) The Trænadjupet Slide, offshore Norway-morphology, evacuation and triggering mechanisms. Mar Geol 171: 95–114CrossRefGoogle Scholar
  33. Lindberg B, Berndt C, Mienert J (in press) The Fugløy Reefs on the Norwegian-Barents continental margin: cold-water corals at 70°N, their acoustic signature, geologic, geomorphologic and oceanographic setting. Int J Earth SciGoogle Scholar
  34. Lindberg B, Mienert J (2005). Sedimentological and geochemical environment of the Fugløy Reefs off northern Norway. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 633–650Google Scholar
  35. Lurton X (2002) An introduction to underwater acoustics; principles and applications. Springer, LondonGoogle Scholar
  36. Lyall G (2000) Minimum standards for submarine cable route surveys. ICPC Plenary, May 2000, Copenhagen, pp 1–7Google Scholar
  37. Masson DG, Bett BJ, Billett DSM, Jacobs CL, Wheeler AJ, Wynn RB (2003) The origin of deep-water, coral-topped mounds in the northern Rockall Trough, Northeast Atlantic. Mar Geol 194: 159–180CrossRefGoogle Scholar
  38. Momma H (2000) Deep ocean technology at JAMSTEC. Mar Technol Soc J 33: 49–64Google Scholar
  39. Mortensen PB (2000) Lophelia pertusa (Scleractinia) in Norwegian waters. Distribution, growth, and associated fauna. PhD thesis, Dept Fish Marine Biol, Univ Bergen, NorwayGoogle Scholar
  40. Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54: 83–104Google Scholar
  41. Mortensen PB, Rapp HT (1998) Oxygen-and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L) (Anthozoa: Scleractinia): Implications for determination of linear extension rates. Sarsia 83: 433–446Google Scholar
  42. Mortensen PB, Hovland MT, Fosså JH, Furevik DM (2001) Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J Mar Biol Ass UK 81: 581–597Google Scholar
  43. Mortensen PB, Hovland M, Brattegard T, Farestveit R (1995) Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64°N on the Norwegian shelf: structure and associated megafauna. Sarsia 80: 145–158Google Scholar
  44. Mortensen PB, Roberts JM, Sundt RC (2000) Video-assisted grabbing: a minimally destructive method of sampling azooxanthellate coral banks. J Mar Biol Ass UK 80: 365–366Google Scholar
  45. Norwegian Directorate of Fisheries (2004) Rapport fra arbeidsgruppen for vern av koraller (Report from the working group for the protection of coral reefs). Norw Directorate Fish, Bergen, 54 ppGoogle Scholar
  46. Novarini JC, Caruther JW (1998) A simplified approach to backscattering from a rough seafloor with sediment inhomogeneities. J Ocean Engin 23: 157–166Google Scholar
  47. Ottesen D, Dowdeswell JA, Rise L, Rokoengen K, Henriksen S (2002) Large-scale morphological evidence for past ice-stream flow on the mid-Norwegian continental margin. In: Dowdeswell JA, Ocofaigh C (eds) Glacier-influenced sedimentation in highlatitude continental margins. Geol Soc London Spec Publ 203, pp 245–258Google Scholar
  48. Parker WR, Doyle K, Parker ER, Kershaw PJ, Malcolm SJ, Lomas P (2003) Benthic interface studies with landers. Consideration of lander/interface interactions and their design implications. J Exper Mar Biol Ecol 285: 179–190Google Scholar
  49. Petitt, RA Jr, Harris DW, Wooding B, Bailey J, Jolly J, Hobart E, Chave AD, Duennebier F, Butler R, Bowen A, Yoerger D (2002) The Hawaii-2 Observatory. J Ocean Engin 27: 245–253Google Scholar
  50. Roberts JM, Gage JD, ACES party (2003) Assessing biodiversity associated with cold-water coral reefs: pleasures and pitfalls. Erlanger Geol Abh Sonderbd 4: 73Google Scholar
  51. Roberts JM, Peppe OC, Dodds LA, Mercer DJ, Thomson WT, Gage JD, Meldrum DT (2005) Monitoring environmental variability around cold-water coral reefs: the use of a benthic photolander and the potential of seafloor observatories. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 483–502Google Scholar
  52. Rokoengen K, Rise L, Bryn P, Frengstad B, Gustavsen B, Nygaard E, Sættem J (1995) Upper Cenozoic stratigraphy on the Mid-Norwegian continental shelf. Norsk Geol Tidsskr 75: 88–104Google Scholar
  53. Rüggeberg A, Dorschel B, Dullo W-Chr (in press) The record of past oceans locked in a carbonate mound in the Porcupine Basin: benthic forams and grain-size clues. Int J Earth SciGoogle Scholar
  54. Schwinghamer P, Guigné JY, Siu WC (1996) Quantifying the impact of trawling on benthic habitat structure using high-resolution acoustics and chaos theory. Can J Fish Aquat Sci 53: 288–296CrossRefGoogle Scholar
  55. Strømgren T (1971) Vertical and Horizontal Distribution of Lophelia pertusa (Linné) in Trondheimsfjorden on the West Coast of Norway. K Norske Vidensk Selsk Skr 6: 1–19Google Scholar
  56. Svellingen IK, Korneliussen RJ, Furevik D (2002) Acoustic discrimination of deep-sea coral reefs from the sea-bed. Poster. 6th ICES Symp Acoust Fish Aqua Ecol, Montpellier, France, June 2002Google Scholar
  57. Wilson JB (1979a) The distribution of the coral Lophelia pertusa (L.) (L. prolifera (Pallas)) in the north-east Atlantic. J Mar Biol Ass UK 59: 149–164Google Scholar
  58. Wilson JB (1979b) ‘Patch’ development of the deep-water coral Lophelia pertusa (L.) on Rockall Bank. J Mar Biol Ass UK 59: 165–177Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jan Helge Fosså
    • 1
  • Björn Lindberg
    • 2
  • Ole Christensen
    • 3
  • Tomas Lundälv
    • 4
  • Ingvald Svellingen
    • 1
  • Pål B. Mortensen
    • 1
  • John Alvsvåg
    • 1
  1. 1.Institute of Marine ResearchNordnes, BergenNorway
  2. 2.Department of GeologyUniversity of Tromsö, NorwayTromsöNorway
  3. 3.Geological Survey of NorwayLade, TrondheimNorway
  4. 4.Tjärnö Marine Biological LaboratoryStrömstadSweden

Personalised recommendations