Advertisement

Dietary Antioxidants and Paraoxonases Against LDL Oxidation and Atherosclerosis Development

  • M. Aviram
  • M. Kaplan
  • M. Rosenblat
  • B. Fuhrman
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 170)

Abstract

Oxidative modification of low-density lipoprotein (LDL) in the arterial wall plays a key role in the pathogenesis of atherosclerosis. Under oxidative stress LDL is exposed to oxidative modifications by arterial wall cells including macrophages. Oxidative stress also induces cellular-lipid peroxidation, resulting in the formation of ‘oxidized macrophages’, which demonstrate increased capacity to oxidize LDL and increased uptake of oxidized LDL. Macrophage-mediated oxidation of LDL depends on the balance between pro-oxidants and antioxidants in the lipoprotein and in the cells. LDL is protected from oxidation by antioxidants, as well as by a second line of defense—paraoxonase 1 (PON1),which is a high-density lipoprotein-associated esterase that can hydrolyze and reduce lipid peroxides in lipoproteins and in arterial cells. Cellular paraoxonases (PON2 and PON3) may also play an important protective role against oxidative stress at the cellular level. Many epidemiological studies have indicated a protective role for a diet rich in fruits and vegetables against the development and progression of cardiovascular disease. A large number of studies provide data suggesting that consumption of dietary antioxidants is associated with reduced risk for cardiovascular diseases. Basic research provides plausible mechanisms by which dietary antioxidants might reduce the development of atherosclerosis. These mechanisms include inhibition of LDL oxidation, inhibition of cellular lipid peroxidation and consequently attenuation of cell-mediated oxidation of LDL. An additional possible mechanism is preservation/increment of paraoxonases activity by dietary antioxidants. This review chapter presents recent data on the anti-atherosclerotic effects and mechanism of action of three major groups of dietary antioxidants—vitamin E, carotenoids and polyphenolic flavonoids.

Keywords

Antioxidants LDL Oxidized-LDL Paraoxonase Flavonoids Vitamin E Carotenoids Atherosclerosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott CA, Mackness MI, Kumar S, Boulton AJ, Durrington PN (1995) Serum paraoxonase activity, concentration, and phenotype distribution in diabetes mellitus and its relationship to serum lipids and lipoproteins. Arterioscler Thromb Vasc Biol 15:1812–1818PubMedGoogle Scholar
  2. Ahmed Z, Ravandi A, Maguire GF, Emili A, Draganov D, La Du BN, Kuksis A, Connelly PW (2001) Apolipoprotein A-I promotes the formation of phosphatidylcholine core aldehydes that are hydrolyzed by paraoxonase (pon-1) during high density lipoprotein oxidation with a peroxynitrite donor. J Biol Chem 276:24473–24481CrossRefPubMedGoogle Scholar
  3. Albertini R, Moratti R, De Luca G (2002) Oxidation of low-density lipoprotein in atherosclerosis from basic biochemistry to clinical studies. Curr Mol Med 6:579–592CrossRefGoogle Scholar
  4. Aviram M (1991) The contribution of the macrophage receptor for oxidized LDL to its cellular uptake. Biochem Biophys Res Commun 179:359–365CrossRefPubMedGoogle Scholar
  5. Aviram M (1993)Modified forms of low density lipoprotein and atherosclerosis. Atherosclerosis. 98:1–9CrossRefPubMedGoogle Scholar
  6. Aviram M (1995) Oxidative modification of low density lipoprotein and atherosclerosis. Isr J Med Sci 31:241–249PubMedGoogle Scholar
  7. Aviram M (1996) Interaction of oxidized low density lipoprotein with macrophages in atherosclerosis and the antiatherogenicity of antioxidants. Eur J Clin Chem Clin Biochem 34:599–608PubMedGoogle Scholar
  8. Aviram M (1999a) Antioxidants in restenosis and atherosclerosis. Curr Interven Cardiol Rep 1:66–78Google Scholar
  9. Aviram M (1999b) Does paraoxonase play a role in susceptibility to cardiovascular disease? Mol Med 5:381–386Google Scholar
  10. Aviram M (2000) Review of human studies on oxidative damage and antioxidant protection related to cardiovascular diseases. Free Radic Res 33:S85–S97PubMedGoogle Scholar
  11. Aviram M. (2003a) Lipid peroxidation and atherosclerosis: the importance of selected patient groups analysis. Isr Med Assoc J 5:734–735PubMedGoogle Scholar
  12. Aviram M (2003b) Dietary antioxidants stimulate the expression of paraoxonases which provides protection against atherosclerosis development. Curr Top Nutraceutical Res 1:183–191Google Scholar
  13. Aviram M (2003c) Introduction to the serial review on paraoxonases, oxidative stress, and cardiovascular diseases. Free Radic Biol Med 37:1301–1303CrossRefGoogle Scholar
  14. Aviram M (2004) Introduction to the serial review on paraoxonases, oxidative stress, and cardiovascular diseases. Free Radic Biol Med 37:1301–1303CrossRefPubMedGoogle Scholar
  15. Aviram M, Eias K (1993) Dietary olive oil reduces low-density lipoprotein uptake by macrophages and decreases the susceptibility of the lipoprotein to undergo lipid peroxidation. Ann Nutr Metab 37:75–84PubMedGoogle Scholar
  16. Aviram M, Fuhrman B (1998a) LDL Oxidation by arterial wall macrophages depends on the oxidative status in the lipoprotein and in the cells: Role of prooxidants vs. antioxidants. Mol Cell Biochem 188:149–159CrossRefPubMedGoogle Scholar
  17. Aviram M, Fuhrman B (1998b) Polyphenolic flavonoids inhibit macrophage-mediated oxidation of LDL and attenuate atherogenesis. Atherosclerosis 137(Suppl): S45–S50PubMedGoogle Scholar
  18. Aviram M, Fuhrman B (2003) Effects of flavonoids on the oxidation of LDL and atherosclerosis. In: Rich-Evans C, Packer L (eds) Flavonoids in health and disease, Vol II. Marcel Dekker, New York, pp 165–203Google Scholar
  19. Aviram M, Rosenblat M (1994). Macrophage mediated oxidation of extracellular low density lipoprotein requires an initial binding of the lipoprotein to its receptor. J Lipid Res 35:385–398PubMedGoogle Scholar
  20. Aviram M, Rosenblat M (2003) Oxidative stress in cardiovascular diseases: role of oxidized lipoproteins in macrophage foam cell formation and atherosclerosis. In: Fuchs J, Podda M, Packer L (eds) Redox genome interactions in health and disease. Marcel Dekker, New York, pp 557–590Google Scholar
  21. Aviram M, Rosenblat M (2004) Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic Biol Med 37:1304–1316CrossRefPubMedGoogle Scholar
  22. Aviram M, Rosenblat M, Etzioni A, Levy R (1996) Activation of NADPH oxidase is required for macrophage-mediated oxidation of low density lipoprotein. Metabolism 45:1069–1079PubMedGoogle Scholar
  23. Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN. (1998) Paraoxonase inhibits high density lipoprotein (HDL) oxidation and preserves its functions: A possible peroxidative role for paraoxonase. J Clin Invest 101:1581–1590PubMedGoogle Scholar
  24. Aviram M, Rosenblat M, Billecke S, Erogul J, Sorenson R, Bisgaier CL, Newton RS, La Du B (1999) Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic Biol Med 26:892–904CrossRefPubMedGoogle Scholar
  25. Aviram M, Dorenfeld L, Rosenblat M, Volkova N, Kaplan M, Hayek T, Presser D, Fuhrman B (2000a) Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in the atherosclerotic apolipoprotein E deficient mice. Am J Clin Nutr 71:1062–1076PubMedGoogle Scholar
  26. Aviram M, Hardak E, Vaya J, Mahmood S, Milo S, Hoffman A, Billecke S, Draganov D, Rosenblat M (2000b) Human serum paraoxnases (PON 1), Q and R selectively decrease lipid peroxides in coronary and carotid atherosclerotic lesions: PON 1 esterase and peroxidase-like activities. Circulation 101:2510–2517PubMedGoogle Scholar
  27. Aviram M, Rosenblat M, Gaitini D, Nitecki S, Hoffman A, Dornfeld L, Volkova N, Presser D, Attias J, Leiker H, Hayek T (2004a) Pomegranate juice consumption for 3 years by patients with carotid artery stenosis (CAS) reduces common carotid intima-media thickness (IMT), blood pressure and LDL oxidation. Clin Nutr 23:423–433CrossRefPubMedGoogle Scholar
  28. Aviram M, Vaya J, Fuhrman B (2004b) Licorice root flavonoid antioxidants reduce LDL oxidation and attenuate cardiovascular diseases. In: Packer L, Choon Nam O, Halliwell B (eds) Herbal and traditional medicine: Molecular aspects of health. CHIPS Texas, chap 27, pp595–614Google Scholar
  29. Baoutina A, Dean RT, Jessup W (1998) Alpha-tocopherol supplementation of macrophages does not influence their ability to oxidize LDL. J Lipid Res. 39:114–130PubMedGoogle Scholar
  30. Belinky PA., Aviram M, Mahmood S, Vaya J (1998a) Structural aspects of the inhibitory effect of glabridin on LDL oxidation. Free Radic Biol Med 24:1419–1429PubMedGoogle Scholar
  31. Belinky PA, Aviram M, Fuhrman B, Rosenblat M, Vaya J (1998b) The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during is oxidation. Atherosclerosis 137:49–61CrossRefPubMedGoogle Scholar
  32. Beltowski J, Wojcicka G, Mydlarcyk M, Jamroz A (2002) Cerivastatin modulates plasma paraoxonase/arylesterase activity and oxidant-antioxidant balance in the rat. Pol J Pharmacol 54:143–150PubMedGoogle Scholar
  33. Berliner JA, Heinecke JW (1996) The role of oxidized lipoproteins in atherosclerosis. Free Radic Biol Med 20:707–727CrossRefPubMedGoogle Scholar
  34. Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, Knecht A, Weissgarten Y, Brunner D, Fainaru M, Green MS (2000) Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 7:356(9237):1213–1218Google Scholar
  35. Boaz M, Smetana S, Matas Z, Bor A, Pinchuk I, Fainaru M, Green MS, Lichtenberg D (2003) Lipid oxidation kinetics in hemodialysis patients with and without history of myocardial infarction. Isr Med Assoc J 10:692–696Google Scholar
  36. Bobak M, Hense HW, Kark J, Kuch B, Vojtisek P, Sinnreich R, Gostomzyk J, Bui M von Eckardstein A, Junker R, Fobker M, Schulte H, Assmann G, Marmot M (1999) An ecological study of determinants of coronary heart disease rates: a comparison of Czech, Bavarian and Israeli men. Int J Epidemiol 28: 437–444PubMedGoogle Scholar
  37. Boemi M, Leviev I, Sirolla C, Pieri C, Marra M, James RW (2001) Serum paraoxonase is reduced in type 1 diabetic patients compared to non-diabetic, first degree relatives; influence on the ability of HDL to protect LDL from oxidation. Atherosclerosis 155:229–235PubMedGoogle Scholar
  38. Burton GW, Joyce A, Ingold KU (1983) Is vitamin E the only lipid-soluble, chain breaking antioxidant in human blood plasma and erythrocyte membranes? Arch Biochem Biophys 221:281–290PubMedGoogle Scholar
  39. Caccetta RA, Croft KD, Beilin LJ, Puddey IB (2000) Ingestion of red wine significantly increases plasma phenolic acid concentrations but does not acutely affect ex vivo lipoprotein oxidizability. Am J Clin Nutr 71:67–74PubMedGoogle Scholar
  40. Cachia O, Benna JE, Pedruzzi E, Descomps B, Gougerot-Pocidalo MA, Leger CL (1998) Alpha-tocopherol inhibits the respiratory burst in human monocytes. Attenuation of p47 (phox) membrane translocation and phosphorylation. J Biol Chem 273:32801–32805PubMedGoogle Scholar
  41. Chan AC (1998) Vitamin E and atherosclerosis. J Nutr 128:1593–1596PubMedGoogle Scholar
  42. Chopra M, Thurnham DI (1999) Antioxidants and lipoprotein metabolism. Proc Nutr Soc 58:663–671PubMedGoogle Scholar
  43. Crawford RS, Kirk EA, Rosenfeld ME, LeBoeuf RC, Chait A (1998) Dietary antioxidants inhibit development of fatty streak lesions in the LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol 18:1506–1513PubMedGoogle Scholar
  44. Cyrus T, Yao Y, Rokach J, Tang LX, Pratico D (2003) Vitamin E reduces progression of atherosclerosis in low-density lipoprotein receptor-deficient mice with established vascular lesions. Circulation 107:521–523CrossRefPubMedGoogle Scholar
  45. De Rijke YB, Demacker PN, Assen NA, Sloots LM, Katan MB, Stalenhoef AF (1996) Red wine consumption does not affect oxidizability of low-density lipoprotein volunteers. Am J Clin Nutr 63:329–334PubMedGoogle Scholar
  46. De Whalley CV, Rankin SM, Hoult RS, Jessup W, Leake DS (1990) Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochem Pharmacol 39:1743–1750PubMedGoogle Scholar
  47. Dieber RM, Puhl H, Waeg G, Striegl G, Esterbauer H (1991) Effect of oral supplementation with D-α-tocopherol on the vitamin E content of human LDLs and resistance to oxidation. J Lipid Res 32:1325–1332PubMedGoogle Scholar
  48. Dugas TR, Morel DW, Harrison EH (1998) Impact of LDL carotenoid and alpha-tocopherol content on LDL oxidation by endothelial cells in culture. J Lipid Res 39:999–1007PubMedGoogle Scholar
  49. Dugas TR, Morel DW, Harrison EH (1999) Dietary supplementation with beta-carotene, but not with lycopene, inhibits endothelial cell-mediated oxidation of low-density lipoprotein. Free Radic Biol Med 26:1238–1244PubMedGoogle Scholar
  50. Durrington PN, Mackness B, Mackness MI (2001) Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol 21:473–480PubMedGoogle Scholar
  51. Draganov D, Stetson PL, Watson C, Billecke S, La Du BN (2000) Rabbit serum paraoxonase 3 (PON3) is a high density lipoprotein-associated lactonase and protects low density lipoprotein against oxidation. J Biol Chem 275:33435–33442PubMedGoogle Scholar
  52. Dwyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A, Hama-Levy S, Hough G, Wang X, Drake T, Merz CN, Fogelman AM (2001) Oxygenated carotenoid lutein and progression of early atherosclerosis: the Los Angeles atherosclerosis study. Circulation 103:2922–2927PubMedGoogle Scholar
  53. Emmert DH, Kirchner JT (1999) The role of vitamin E in the prevention of heart disease. Arch Fam Med 8:537–542CrossRefPubMedGoogle Scholar
  54. Fang JC, Kinlay S, Beltrame J, Hikiti H, Wainstein M, Behrendt D, Suh J, Frei B, Mudge GH, Selwyn AP, Ganz P (2002) Effect of vitamins C and E on progression of transplant-associated arteriosclerosis: a randomised trial. Lancet 359:1108–1113CrossRefPubMedGoogle Scholar
  55. Freese R, alfthan G, Jauhiainen M, Basu S, Erlund I, Salminen I, Aro A, Mutanen M (2002) High intake of vegetables, berries, and apples combined with a high intake of linoleic or oleic only slightly affect markers of lipid peroxidation and lipoprotein metabolism in healthy subjects. Am J Clin Nutr 76:950–960PubMedGoogle Scholar
  56. Frei B (1999) On the role of vitamin C and other antioxidants in atherogenesis and vascular dysfunction. Proc Soc Exp Biol Med 222:196–204PubMedGoogle Scholar
  57. Fuhrman B, Aviram M (1996) White wine reduces the susceptibility of low density lipoprotein to oxidation. Am J Clin Nutr 63:403–404PubMedGoogle Scholar
  58. Fuhrman B, Aviram M (2001a) Flavonoids protect LDL from oxidation and attenuate atherosclerosis. Curr Opin Lipidol 12:41–48CrossRefPubMedGoogle Scholar
  59. Fuhrman B, Aviram M (2001b) Anti-atherogenicity of nutritional antioxidants. Idrugs 4:82–92PubMedGoogle Scholar
  60. Fuhrman B, Aviram M (2001c) Polyphenols and flavonoids protect LDL against atherogenic modifications. In: Handbook of antioxidants: Biochemical, nutritional and clinical aspects, 2nd edn. Ch. 16, pp 303–336Google Scholar
  61. Fuhrman B, Aviram M (2002) Preservation of paraoxonase activity by wine flavonoids: possible role in protection of LDL from lipid peroxidation. Ann NY Acad Sci 957:321–324PubMedGoogle Scholar
  62. Fuhrman B Oiknine J, Aviram M (1994) Iron induces lipid peroxidation in cultured macrophages, increases their ability to oxidatively modify LDL, and affects their secretory properties. Atherosclerosis 111:65–78CrossRefPubMedGoogle Scholar
  63. Fuhrman B, Lavy A, Aviram M (1995) Consumption of red wine with meals reduces the susceptibility of human plasma and LDL to undergo lipid peroxidation. Am J Clin Nutr 61:549–554PubMedGoogle Scholar
  64. Fuhrman B, Ben-Yaish L, Attias J, Hayek T, Aviram M (1997a) Tomato's lycopene and β-carotene inhibit low density lipoprotein oxidation and this effect depends on the lipoprotein vitamin E content. Nutr Metab Cardiovasc Dis 7:433–443Google Scholar
  65. Fuhrman B, Oiknine J, Keidar S, Ben-Yaish L, Kaplan M, Aviram M (1997b) Increased uptake of LDL by oxidized macrophages is the result of an initial enhanced LDL receptor activity and of a further progressive oxidation of LDL. Free Radic Biol Med 23:34–46CrossRefPubMedGoogle Scholar
  66. Fuhrman B, Buch S, Vaya J, Belinky PA, Coleman R, Hayek T, Aviram M (1997c) Licorice extract and its major polyphenol glabridin protect low-density lipoprotein against lipid peroxidation: in vitro and ex vivo studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr 66:267–275PubMedGoogle Scholar
  67. Fuhrman B, Volkova N, Rosenblat M, Aviram M (2000a) Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic. Antiox Redox Signal 2:491–506CrossRefGoogle Scholar
  68. Fuhrman B, Rosenblat M, Hayek T, Coleman R, Aviram M (2000b) Dietary consumption of ginger extract attenuates development of atherosclerosis in the atherosclerotic apolipoprotein E deficient mice: hypocholesterolemic and antioxidative effects. J Nutr 130:1124–1131PubMedGoogle Scholar
  69. Fuhrman B, Volkova N, Aviram M (2001) White wine with red wine-like properties: increased extraction of grape skin polyphenols improves the antioxidant capacity of the derived white wine. J Agric Food Chem 49:3164–3168CrossRefPubMedGoogle Scholar
  70. Fuhrman B, Koren L, Volkova N, Hayek T, Aviram M (2002) Atorvastatin therapy in hypercholesterolemic patients suppresses cellular uptake of oxidized-LDL by differentiating monocytes. Atherosclerosis 164:179–185PubMedGoogle Scholar
  71. Fuhrman B, Shiner M, Volova N, Aviram M (2004a) Cell-induced copper ion-mediated low density lipoprotein oxidation increases during in vivo monocyte-to-macrophage differentation. Free Radic Biol Med 37:259–271CrossRefPubMedGoogle Scholar
  72. Fuhrman B, Partoush A, Aviram M (2004b) Acetylcholine esterase protects LDL against oxidation. Biochem Biophys Res Commun 322:974–978PubMedGoogle Scholar
  73. Fuhrman B, Volkova N, Aviram M (2005a) Paraoxonase 1 (PON1) is present in postprandial chylomicrons. Atherosclerosis (in press)Google Scholar
  74. Fuhrman B, Volkova N, Coleman R, Aviram M (2005b) Grape powder polyphenols attenuate atherosclerosis development in apolipoprotein E deficient (E0) mice and reduce macrophage atherogenicity. J Nutr (in press)Google Scholar
  75. Futterman LG and Lemberg L (1999) The use of antioxidants in retarding atherosclerosis: fact or fiction? Am J Crit Care 8:130–133PubMedGoogle Scholar
  76. Garin MC, James RW, Dussoix P, Blanche H, Passa P, Froguel P, Ruiz J (1997) Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. Apossible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J Clin Invest 99:62–66PubMedGoogle Scholar
  77. Gerrity RG (1981) The role of monocytes in atherogenesis. Am J Pathol 103:181–190PubMedGoogle Scholar
  78. Gey K, Puska P, Jordan P, Moser UK (1991) Inverse correlation between plasma vitamin E and mortality from ischemic heart disease in cross-cultural epidemiology. Am J Clin Nutr 53(Suppl):326S–334SPubMedGoogle Scholar
  79. Gianetti J, Pedrinelli R, Petrucci R, Lazzerini G, De Caterina M, Bellomo G, De Caterina R (2002) Inverse association between carotid intima-media thickness and the antioxidant lycopene in atherosclerosis. Am Heart J 143:467–474CrossRefPubMedGoogle Scholar
  80. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430CrossRefPubMedGoogle Scholar
  81. Glass CK, Witztum JL (2001) Atherosclerosis: The road ahead. Cell 104:503–516CrossRefPubMedGoogle Scholar
  82. Greenberg ER, Baron JA, Karagas MR, Stukel TA, Nierenberg DW, Stevens MM, Mandel JS, Haile RW (1996) Mortality associated with low plasma concentration of beta carotene and the effect of oral supplementation. JAMA 275:699–703CrossRefPubMedGoogle Scholar
  83. Halliwell B (1994) Free radicals, antioxidants and human disease: Curiosity, cause, or consequence. Lancet 344:721–724PubMedGoogle Scholar
  84. Hayek T, Fuhrman B, Vaya J, Rosenblat M, Belinky P, Coleman R, Elis A, Aviram M (1997) Reduced progression of atherosclerosis in the apolipoprotein E deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb Vasc Biol 17:2744–2752PubMedGoogle Scholar
  85. Hayek T, Hussein K, Aviram M, Coleman R, Keidar S, Pavlotxky E, Kaplan M (2005) Macrophage-foam cell formation in streptozoto cin-induced diabetic mice: Stimulatory effect of glucose. Curr Opin Liidol (in press)Google Scholar
  86. Hegele RA (1999) Paraoxonase genes and disease. Ann Med 31:217–224PubMedGoogle Scholar
  87. Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, Belanger C, LaMotte F, Gaziano JM, Ridker PM, Willett W, Peto R (1996) Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 334:1145–1149PubMedGoogle Scholar
  88. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1011CrossRefPubMedGoogle Scholar
  89. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S, et al (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155:381–386CrossRefPubMedGoogle Scholar
  90. Herttuala SY (1998) Is oxidized low density lipoprotein present in vivo? Curr Opin Lipidol 9:337–344PubMedGoogle Scholar
  91. Hodis HN, Mack WJ, LaBree L, Cashin-Hemphill L, Sevanian A, Johnson R, Azen SP (1995) Serial coronary angiographic evidence that antioxidant vitamin intake reduces progression of coronary artery atherosclerosis. JAMA 273:1849–1854CrossRefPubMedGoogle Scholar
  92. Hodis HN, Mack WJ, LaBree L, Mahrer PR, Sevanian A, Liu CR, Liu CH, Hwang J, Selzer RH, Azen SP (2002) VEAPS Research Group Alpha-to copherol supplementation in healthy individuals reduces low-density lipoprotein oxidation but not atherosclerosis: the Vitamin E Atherosclerosis Prevention Study (VEAPS). Circulation 106:1453–1459CrossRefPubMedGoogle Scholar
  93. Howard A, Chopra M, Thurnham D, Strain J, Fuhrman B, Aviram M (2002) Red wine consumption and inhibition of LDL oxidation: What are the important components? Med Hypothesis 59:101–104CrossRefGoogle Scholar
  94. Investigators G (1999) Dietary supplementation with n-3PUFA and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Lancet 354:447–455PubMedGoogle Scholar
  95. Ishikawa T, Suzukawa M, Ito T, Yioshida H, Ayaori M, Nishiwaki M, Yonemura A, Hara Y, Nakamura H (1997) Effect of tea flavonoid supplementation on the susceptibility of low density lipoprotein to oxidative modification. Am J Clin Nutr 66:261–266PubMedGoogle Scholar
  96. Jarvik GP, Tsai NT, McKinstry LA, Wani R, Brophy VH, Richter RJ, Schellenberg GD, Heagerty PJ, Hastsukami TS, Furlong CE (2002) Vitamin Cand E intake is associated with increased paraoxonase activity. Arterioscler Thromb Vasc Biol 22:1329–1333CrossRefPubMedGoogle Scholar
  97. Jialal I, Fuller CJ, Huet BA (1995) The effect of α-tocopherol suplementation on LDL oxidation. A dose-response study. Arterioscler Thromb Vasc Biol 15:190–198PubMedGoogle Scholar
  98. Jialal I, Devaraj S (1996) The role of oxidized low density lipoprotein in atherogenesis. J Nutr 126:1053S–1057SPubMedGoogle Scholar
  99. Jialal I, Devaraj S (2003) Antioxidants and atherosclerosis: don't throw out the baby with the bath water. Circulation 107:926–928PubMedGoogle Scholar
  100. Jialal I, Traber M, Devaraj S (2001) Is there a vitamin E paradox. Curr Opin Lipidol 12:49–53CrossRefPubMedGoogle Scholar
  101. Kaplan M, Aviram M (1999) Oxidized low density lipoprotein: Atherogenic and proinflammatory characteristics during macrophage foam cell formation. An inhibitory role for nutritional antioxidants and serum paraoxonase. Clin Chem Lab Med 37:777–787CrossRefPubMedGoogle Scholar
  102. Kaplan M, Aviram M (2004a) Red wine administration to apolipoprotein E-deficient mice reduces their macrophage-derived extracellular matrix atherogenic properties. Biol Res 37:239–245PubMedGoogle Scholar
  103. Kaplan M, Aviram M (2004b) Macrophage-mediated oxidation of LDL and atherogenesis: Protective role for paraoxonase. In: Cellular disfunction in atherosclerosis and diabetes-Reports from bench to bedside. Simionescu M, Sima A, Popov D (eds) Romanian Academy Publishing House, chap 25, pp336–351Google Scholar
  104. Kaplan M, Hayek T, Raz A, Coleman R, Dornfeld L, Vaya J, Aviram M. (2001) Pomegranate juice supplementation to atherosclerotic mice reduces macrophages lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. J Nutr 131:2082–2089PubMedGoogle Scholar
  105. Kaul N, Devaraj S, Jialal I (2001) A-Tocopherol and atherosclerosis. Exp Biol Med 226:5–12Google Scholar
  106. Keany JF, Simon DI, Freedman JE (1999) Vitamin E and vascular homeostasis: implications for atherosclerosis. FASEB J 13:965–975PubMedGoogle Scholar
  107. Kleemola P, Freese R, Jauhiainen M, Pahlman R, Alfthan G, Mutanen M (2002) Dietary determinants of serum paraoxonase activity in healthy humans. Atherosclerosis 160:425–432PubMedGoogle Scholar
  108. Knekt P, Reunanen A, Jarvinen R, Seppanen R, Heliovaara M, Aromaa A (1994) Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am J Epidemiol 139:1180–1189PubMedGoogle Scholar
  109. Knekt P, Jarvinen R, Renuanen A, Maatela J (1996) Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ 312:478–481PubMedGoogle Scholar
  110. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568PubMedGoogle Scholar
  111. Kohlmeier L, Hasting SB (1995) Epidemiologic evidence of a role of carotenoids in cardiovascular disease prevention. Am J Clin Nutr 62:137S–146SGoogle Scholar
  112. Kohlmeier L, Kark JD, Gomez-Garcia E, Martin BC, Steck SE, Kardinaal AFM, Ringstad J, Thamm M, Masaev V, Riemersma R, Martin-Moreno JM, Huttunen JK, Kok F (1997) Lycopene and myocardial infarction risk in the EURAMIC study. Am J Epidemiol 146:618–626PubMedGoogle Scholar
  113. Krinsky NI (2001) Carotenoids as antioxidants. Nutrition 17:815–817CrossRefPubMedGoogle Scholar
  114. Kritenson M, Zieden B, Kucinskiene Z, Elinder LS, Bergdahl B, Elwing B, Abaravicius A, Razinkoviene L, Calkauskas H, Olson A (1997) Antioxidant state and mortality from coronary heart disease in Lithuanian and Swedish men: concomitant cross sectional study of men aged 50. Br Med J 314:629–633Google Scholar
  115. Kritchevsky SB, Tel GS, Shimakawa T, Dennis B I R, Kohlmeier L, Steere E, Heiss G (1998) Provitamin A carotenoid intake and carotid artery plaques: the atherosclerosis risk in communities study. Am J Clin Nutr 68:726–733PubMedGoogle Scholar
  116. Kritchevsky SB (1999) β-carotene, carotenoids and the prevention of coronary heart disease. J Nutr 129: 5–8PubMedGoogle Scholar
  117. Kushi LH, Folsom AR, Prineas RJ, Mink PJ, Wu Y, Bostick RM (1996) Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. New Engl J Med 334:1156–1162PubMedGoogle Scholar
  118. La Du BN, Adkins S, Kuo CL, Lipsig D (1993) Studies on human serum paraoxonase/arylesterase. Chem Biol Interact 87:25–34CrossRefPubMedGoogle Scholar
  119. La Du BN (1996) Structural and functional diversity of paraoxonases. Nat Med 2:1186–1187PubMedGoogle Scholar
  120. La Du BN (2001) Is paraoxonase-3 another HDL-associated protein protective against atherosclerosis? Arterioscler Thromb Vasc Biol 21:467–468PubMedGoogle Scholar
  121. Lafont AM, Chai YC, Cornhill JF, Whitlow PL, Howe PH, Chisolm GM (1995) Effect of α-tocopherol on restenosis after angioplasty in a model of experimental atherosclerosis. J Clin Invest 95:1018–1025PubMedGoogle Scholar
  122. Lee CH, Jeong TS, Choi YK, Hyun BH, Oh GT, Kim EH, Kim JR, Han JI, Bok SH (2001) Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun 15:681–688CrossRefGoogle Scholar
  123. Letellier C, Durou MR, Jouanolle AM, Le Gall JY, Poirier JY, Ruelland A (2002) Serum paraoxonase activity and paraoxonase gene polymorphism in type 2 diabetic patients with or without vascular complications. Diabetes Metab 28:297–304PubMedGoogle Scholar
  124. Levy Y, Kaplan M, Ben-Amotz A, Aviram M (1996) Effect of dietary supplementation of betacarotene on human monocyte-macrophage-mediated oxidation of low density lipoprotein. Isr J Med Sci 32:473–478PubMedGoogle Scholar
  125. Linseisen J, Hoffmann J Riedl J, Wolfram G (1998) Effect of single oral dose of antioxidant mixture (vitamin E, carotenoids) on the formation of cholesterol oxidation products after ex vivo LDL oxidation in humans. Eur J Med Res 3: 5–12PubMedGoogle Scholar
  126. Losonczy K (1996) Vitamin E and vitamin C supplement use and risk of all cause and coronary heart disease mortality in older persons: The established populations for epidemiologic studies of the elderly. Am J Clin Nutr 64:190–196PubMedGoogle Scholar
  127. Mackness MI, Harty D, Bhatnagar D, Winocour PH, Arrol S, Ishola M, Durrington PN (1991a) Serum paraoxonase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus. Atherosclerosis 86:193–197CrossRefPubMedGoogle Scholar
  128. Mackness MI, Arrol S, Durrington PN (1991b) Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett 286: 152–154CrossRefPubMedGoogle Scholar
  129. Mackness Mi, Arrol S, Abbott CA, Durrington PN (1993) Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis 104:129–135CrossRefPubMedGoogle Scholar
  130. Mackness MI, Mackness B, Durrington PN, Connelly PW, Hegele RA (1996) Paraoxonases biochemistry, genetics and relationship to plasma lipoproteins. Curr Opin Lipidol 7:69–76PubMedGoogle Scholar
  131. Mackness MI, Boullier H, Hennuyer M, Mackness B, Hall M, Tailleux A, Duriez P, Delfly b, Durrington PN, Fruchart JC, Duverager N, Cailloud JM, Castro G, Bouiller A (2000a) Paraoxonase activity is reduced by a pro-atherogenic diet in rabbits. Biochem Biophys Res Commun 269:232–236CrossRefPubMedGoogle Scholar
  132. Mackness MI, Durrington PN, Mackness B (2000b) How high-density lipoprotein protects against the effects of lipid peroxidation. Curr Opin Lipidol 11:383–388CrossRefPubMedGoogle Scholar
  133. Mackness B, Davies GK, Turkie W, Lee E, Roberts DH, Hill E, Roberts C, Durrington PN, Mackness MI (2001) Paraoxonase status in coronary heart disease. Are activity and concentration more important than genotype? Arterioscler Thromb Vasc Biol 21:1451–1457PubMedGoogle Scholar
  134. Maor I, Hayek T, Coleman R, Aviram M (1997) Plasma LDL oxidation leads to its aggregation in the atherosclerotic apolipoprotein E deficient mice. Arterioscler Thromb Vasc Biol 17:2995–3005PubMedGoogle Scholar
  135. Mayne ST (1996) Beta-carotene, carotenoids, and disease prevention in humans. FASEB J 10:690–710PubMedGoogle Scholar
  136. McAnlis GT, McEneny J, Pearce J, Young IS (1998) Black tea consumption does not protect low density lipoprotein from oxidative modification. Eur J Clin Nutr 52:202–206CrossRefPubMedGoogle Scholar
  137. Meyer F, Bairati I, Dagenais G (1994) Lower ischemic heart disease (IHD) incidence and mortality among vitamin supplement users in a cohort of 2226 men. 2nd International Conference. Antioxidant Vitamins and β-Carotene in Disease Prevention. BerlinGoogle Scholar
  138. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760CrossRefPubMedGoogle Scholar
  139. Miyagi Y, Miwa K, Inoue H (1997) Inhibition of human low density lipoprotein oxidation by flavonoids in red wine and grape juice. Am J Cardiol 80:1627–1631CrossRefPubMedGoogle Scholar
  140. Mochizuki H, Scherer SW, Xi T, Nickle DC, Majer M, Huizenga JJ, Tsui LC, Prochazka M (1998) Human PON2 gene at 7q21.3: cloning, multiple mRNA, and missense polymorphism in coding sequence. Gene 213:149–157CrossRefPubMedGoogle Scholar
  141. Morel I, Lescoat G, Cogrel P, et al. (1993) Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 45:13–19CrossRefPubMedGoogle Scholar
  142. Muldoon MF and Kritchevsky SB (1996) Flavonoids and heart disease. BMJ 312:458–459PubMedGoogle Scholar
  143. Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, Shih DM, Van Lenten BJ, Frank JS, Demer LL, Edwards PA, Fogelman AM (1996) The yin and yang of oxidation in the development of the fatty streak: a review based on the 1004 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 16:831–842PubMedGoogle Scholar
  144. Ng CJ, Wadleigh DJ, Gangopadhyay A, Hama S, Grijalva VR, Navab M, Fogelman AM, Reddy ST (2001) Paraoxonase-2 is an ubiquitously expressed protein with antioxidant properties, and is capable of preventing cell-mediated oxidative modification of low density lipoprotein. J Biol Chem 276:44444–44449CrossRefPubMedGoogle Scholar
  145. Nigdikar SV, Williams N, Griffin BA, Howard AH (1998) Consumption of red wine polyphenols reduces the susceptibility of low density lipoproteins to oxidation in vivo. Am J Clin Nutr 68:258–265PubMedGoogle Scholar
  146. Noguchi N, Niki E (1998) Dynamics of vitamin E action against LDL oxidation. Free Radic Res 28:561–572PubMedGoogle Scholar
  147. Oda MN, Bielicki JK, Ho TT, Berger T, Rubin EM, Forte TM (2002) Paraoxonase 1 over-expression in mice and its effect on high-density lipoproteins. Biochem Biophys Res Commun 290:921–927CrossRefPubMedGoogle Scholar
  148. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334:1150–1155CrossRefPubMedGoogle Scholar
  149. Panasenko OM, Sharov VS, Briviba K and Sies H (2000) Interaction of peroxynitrite with carotenoids in human low density lipoproteins. Arch Biochem Biophys 373:302–305CrossRefPubMedGoogle Scholar
  150. Paolisso G, Esposito R, D'Alessio MA, Barbieri M (1999) Primary and secondary prevention of atherosclerosis: is there a role for antioxidants? Diabetes Metab 25:298–306PubMedGoogle Scholar
  151. Parthasarathy S, Rankin SM (1992) The role of oxidized LDL in atherogenesis. Prog Lipid Res 31:127–143CrossRefPubMedGoogle Scholar
  152. Parthasarathy S, Santanam N, Auge N (1998) Oxidized low-density lipoprotein, a two-faced janus in coronary artery disease? Biochem Pharmacol 56:279–284CrossRefPubMedGoogle Scholar
  153. Paiva SA, Russell RM (1999) Beta-carotene and other carotenoids as antioxidants. J Am Coll Nutr 18:426–433PubMedGoogle Scholar
  154. Prasad J (1980) Effect of vitamin E supplementation on leukocyte function. Am J Clin Nutr 33:606–608PubMedGoogle Scholar
  155. Pratico D, Tangirala RK, Rader DJ, Rokach J, FitzGerald GA (1998) Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in apoE-deficient mice. Nat Med 4:1189–1192CrossRefPubMedGoogle Scholar
  156. Primo-Parmo SL, Sorenson RC, Teiber J, La Du BN (1996) The human serum paraoxonase/ arylesterase gene (PON1) is one member of a multigene family. Genomics 33:498–507CrossRefPubMedGoogle Scholar
  157. Princen HM, van Duyvennvoorde W, Buytenhek R, Blonk C, Tijburg LB, Langius JA, Meinders AE, Pijl H (1998) No effect of consumption of green and black tea on plasma lipid and antioxidant levels and on LDL oxidation in smokers. Arterioscler Thromb Vasc Biol 18:833–841PubMedGoogle Scholar
  158. Pryor WA (2000) Vitamin E and heart disease: basic science to clinical intervention trials. Free Radic Biol Med 28:141–164CrossRefPubMedGoogle Scholar
  159. Rantala M, Silaste ML, Tuominen A, Kaikkonen J, Salonen JT, Alfthan G, Aro A, Kesaniemi YA (2002) Dietary modifications and gene polymorphisms alter serum paraoxonase activity in healthy women. J Nutr 132:3012–3017PubMedGoogle Scholar
  160. Rao AV (2002) Lycopene, tomatoes and the prevention of coronary heart disease. Exp Biol Med 227:908–913Google Scholar
  161. Rapola J (1997) Randomized trial of α-tocopherol and β-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet 349:1715–1720CrossRefPubMedGoogle Scholar
  162. Reaven PD, Khouw A, Beltz WF, Parthasarathy S, Witztum JL (1993) Effect of dietary antioxidant combinations in humans. Protection of LDL by vitamin E but not by β-carotene. Arterioscler Thromb 13:590–600PubMedGoogle Scholar
  163. Reddy ST, Wadleigh DJ, Grijalva V, Ng C, Hama S, Gangopadhyay A, Shih DM, Lusis AJ, Navab M, Fogelman AM (2001) Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. Arterioscler Thromb Vasc Biol 21:542–547PubMedGoogle Scholar
  164. Redlich CA, Chung JS, Cullen MR, Blaner WS, Van Bennekum AM, Berglund L (1999) Effect of long-term beta-carotene and vitamin A on serum cholesterol and triglyceride levels among participants in the Carotene and Retinol Efficacy Trial (CARET). Atherosclerosis 145:425–432CrossRefPubMedGoogle Scholar
  165. Renaud S, de Lorgeril M (1992) Wine alcohol, platelets and the French paradox for coronary heart disease. Lancet 339:1523–1526CrossRefPubMedGoogle Scholar
  166. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956CrossRefPubMedGoogle Scholar
  167. Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC (1993) Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 328:1450–1456CrossRefPubMedGoogle Scholar
  168. Rodrigo L, Hernandez AF, Lopez-Caballero JJ, Gil F, Pla A (2001) Immunohistochemical evidence for the expression and induction of paraoxonase in rat liver, kidney, lung and brain tissue. Implications for its physiological role. Chem Biol Intreact 137:123–137CrossRefGoogle Scholar
  169. Rosenblat M, Aviram M (1997) Macrophage glutathione content and glutathione peroxidase activity are inversely related to cell-mediated oxidation of LDL. Free Radic Biol Med 24:305–313CrossRefGoogle Scholar
  170. Rosenblat M, Aviram M (2005) Nutritional and pharmacological influences on paraoxonases. Curr Opin Lipidol (in press)Google Scholar
  171. Rosenblat M, Belinky P, Vaya J, Levy R, Hayek T, Coleman R, Merchav S, Aviram M (1999) Macrophage enrichment with the isoflavan glabridin inhibits NADPH oxidase-induced cell mediated oxidation of low density lipoprotein. J Biol Chem 274:13790–13799CrossRefPubMedGoogle Scholar
  172. Rosenblat M, Vaya J, Aviram M (2002) Oxysterols-induced activation of macrophage NADPH-oxidase enhances cell-mediated oxidation of LDL in the atherosclerotic apolipoprotein E deficient mouse: inhibitory role for vitamin E. Atherosclerosis 160:69–80CrossRefPubMedGoogle Scholar
  173. Rosenblat M, Draganov D, Watson CE, Bisgaier CL, La DU BN, Aviram M (2003) Mouse macrophage paraoxonase 2 (PON2) activity is increased whereas cellular PON3 activity is decreased under oxidative stress. Arterioscler Thromb Vasc Biol 23:468–474CrossRefPubMedGoogle Scholar
  174. Rosenblat M, Hayek T, Hussein K, Aviram M. (2004) Decreased macrophage paraoxonase 2 expression in patients with hypercholesterolemia is the result of their increased cellular cholesterol content: effect of atorvastatin therapy. Arterioscler Thromb Vasc Biol 24:175–180CrossRefPubMedGoogle Scholar
  175. Rosenblat M, Shih D, Vaya J, Aviram M (2005) Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: A possible role for lysophosphatidylcholine. Atherosclerosis 179:69–77CrossRefPubMedGoogle Scholar
  176. Rozenberg O, Rosenblat M, Coleman R, Shih DM, Aviram M (2003) Paraoxonase (PON1)-deficiency is associated with increased macrophage oxidative stress: studies in PON1-knockout mice. Free Radic Biol Med 34:774–784CrossRefPubMedGoogle Scholar
  177. Rozenberg O, Shih D, Aviram M (2005) Paraoxonase 1 (PON1) attenuates macrophage oxidative status: Studies in PON1 transfected cells and in PON1 transgenetic mice. Atherosclerosis (in press)Google Scholar
  178. Salonen JT, Nyyssonen K, Salonen R, Lakka HM, Kaikkonen J, Porkkala-Sarataho E, Voutilainen S, Lakka TA, Rissanen T, Leskinen L, Tuomainen TP, Valkonen VP, Ristonmaa U, Poulsen HE (2000) Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: a randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. J Intern Med 248:377–386CrossRefPubMedGoogle Scholar
  179. Salonen RM, Nyyssonen K, Kaikkonen J, Porkkala-Sarataho E, Voutilainen S, Rissanen TH, Tuomainen TP, Valkonen VP, Ristonmaa U, Lakka HM, Vanharanta M, Salonen JT, Poulsen HE (2003) Antioxidant Supplementation in Atherosclerosis Prevention Study. Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study. Circulation 107:947–953CrossRefPubMedGoogle Scholar
  180. Schaffner T, Taylor K, Bartucci EJ, Fischer-Dzoga K, Beenson JH, Glagov S, Wissler R (1980) Arterial foam cells with distinctive immuno-morphologic and histochemical features of macrophages. Am J Pathol 100:57–80PubMedGoogle Scholar
  181. Serafini M, Ghiselli A, Ferro-Luzzi A (1996) In vivo antioxidant effect of green and black tea in man. Eur J Clin Nutr 50:28–32PubMedGoogle Scholar
  182. Shaish A, Daugherty A, O'sullivan F, Shnfeld G, Heinecke JW (1995) Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits. J Clin Invest 96:2075–2082PubMedGoogle Scholar
  183. Shaish A, George J, Giolburd B, Keren P, Levkovitz H, Harats D (1999) Dietary β-carotene and α-tocopherol combination does not inhibit atherogenesis in an apoE deficient mouse model. Arterioscler Thromb Vasc Biol 19:1470–1475PubMedGoogle Scholar
  184. Sharma MK and Buttner GR (1993) Interaction of vitamin C and vitamin E during free radical stress in plasma: an ESR study. Free Radic Biol Med 14:649–653CrossRefPubMedGoogle Scholar
  185. Shih DM, Xia YR, Miller E, Castellani LW, Subbanagounder G, Cheroutre H, Faull KF, Berliner JA, Witztum JL, Lusis AJ (2000) Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J Biol Chem 275:17527–17535CrossRefPubMedGoogle Scholar
  186. Shiner M, Fuhrman B, Aviram M (2004) Paraoxonase 2 (PON2) expression is upregulated via a reduced-nicotinamide-adenine-dinucleotide-phosphate (NADPH9)-oxidase-dependent mechanism during monocytes differentation into macrophages. Free Radic Biol Med 37:2052–2063CrossRefPubMedGoogle Scholar
  187. Sies H and Stahl W (1995) Vitamins E and C, β-carotene, and other carotenoids as antioxidants. Am J Clin Nutr 62(Suppl 6): 1315S–1321SPubMedGoogle Scholar
  188. Smith T, Kummerow F (1989) Effect of dietary vitamin E on plasma lipids and atherogenesis in restricted ovulator chicken. Atherosclerosis 75:105–109CrossRefPubMedGoogle Scholar
  189. Sorenson RC, Bisgaier CL, Aviram M, XSu C, Billecke S, La Du BN (1999) Human serum paraoxonase/arylesterase's retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids: apolipoprotein A–I stabilizes activity. Arterioscler Thromb Vasc Biol 19:2214–2225PubMedGoogle Scholar
  190. Sozmen EY, sozmen B, Girgin FK, Delen Y, Azarsiz E, Erdener D, Ersoz B (2001) Antioxidant enzymes and paraoxonase show a co-activity in preserving low-density lipoprotein from oxidation. Clin Exp Med 1:195–199CrossRefPubMedGoogle Scholar
  191. Stahl W, Sies H (1997) Antioxidant defense: vitamins E and C and carotenoids. Diabetes 2:S14–S18Google Scholar
  192. Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC (1993) A prospective study of vitamin E supplementation and risk of coronary disease in women. N Engl J Med 328:1444–1449CrossRefPubMedGoogle Scholar
  193. Stein JH, Keevil JG, Wiebe DA, Aeschlimann S, Folts JD (1999) Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 100:1050–1055PubMedGoogle Scholar
  194. Steiner M, Glantz M, Lekos A (1995) Vitamin E plus aspirin compared to aspirin alone in patients with TIA. Am J Clin Nutr 62:1381–1384Google Scholar
  195. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ (1996) Randomized controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347:781–786CrossRefPubMedGoogle Scholar
  196. Steinberg D (1997) Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272:20963–20966CrossRefPubMedGoogle Scholar
  197. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924PubMedGoogle Scholar
  198. Steiner M, Glantz M, Lekos A (1995) Vitamin E plus aspirin compared to aspirin alone in patients with TIA. Am J Clin Nutr 62:1381–1384Google Scholar
  199. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ (1996) Randomized controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347:781–786CrossRefPubMedGoogle Scholar
  200. Stocker R (1999a) The ambivalence of vitamin E in atherogenesis. Trend Biochem Sci 24:219–223CrossRefPubMedGoogle Scholar
  201. Stocker R (1999b) Dietary and pharmacological antioxidants in atherosclerosis. Curr Opin Lipidol 10:589–597CrossRefPubMedGoogle Scholar
  202. Street DA, Comstock GW, Salkeld RM, Achuep W, Klag MJ (1994) Serum antioxidant and myocardial infarction: are low levels of carotenoids and α-tocopherol risk factors for myocardial infarction? Circulation 90:1154–1161PubMedGoogle Scholar
  203. Sun J, Giraud SJ, Moxley RA, Driskell JA (1997) β-carotene and α-tocopherol inhibit the development of atherosclerotic lesions in hypercholesterolemic rabbits. Int J Vitam Nutr Res 67:155–163PubMedGoogle Scholar
  204. Suzukawa M, Ayaori M, Shige H, Hisada T, Ishikawa T, Nakamura H (1998) Effect of supplementation with vitamin E on LDL oxidizability and prevention of atherosclerosis. Biofactors 7:51–54PubMedGoogle Scholar
  205. Swain RA, Kaplan MB (1999) Therapeutic uses of vitamin E in prevention of atherosclerosis. Altern Med Rev 4:414–423PubMedGoogle Scholar
  206. Szuchman A, Aviram M, Khatib S, Tamir S, Vaya J (2005) Exogenous tyrosine-linoleate marker as a tool of the characterization of cellular oxidatives stress in macrophages. Biochemistry (in press)Google Scholar
  207. Tavani A, La Vecchia C (1999) Beta-carotene and risk of coronary heart disease. A review of observational and intervention studies. Biomed Pharmacother 53:409–416CrossRefPubMedGoogle Scholar
  208. Rissanen T, Voutilainen S, Nyyssönen K, Jukka T (2002) Salonen lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med (Maywood) 227:900–907Google Scholar
  209. The HOPE Investigators (2000) Vitamin E supplementation and cardiovascular events in high risk patients: HOPE. N Engl J Med 342:154–161Google Scholar
  210. Tikkanen MJ, Wahala K, Ojala S, Vihma V, Adlercreutz H (1998) Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc Natl Acad Sci USA 95:3106–3110CrossRefPubMedGoogle Scholar
  211. Tubaro FP, Rapuzzi F, Ursini U (1999) Kinetic analysis of antioxidant capacity of wine. Biofactors 9:37–47PubMedGoogle Scholar
  212. Tomas M, Senti M, Garcia-Faria F, Vila J, Torrents A, Covas M, Marrugat J (2000) Effect of simvastatin therapy on paraoxonase activity and related proteins in familial hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 20:2113–2119PubMedGoogle Scholar
  213. Tomas M, Senti M, Elosua R, Vila J, Sala J, Masia R, Marrugat J (2001) Interaction between the Gln-Arg 192 variants of the paraoxonase gene and oleic acid intake as a determinant of high-density lipoprotein cholesterol and paraoxonase activity. Eur J Pharmacol 432:121–128CrossRefPubMedGoogle Scholar
  214. Tward A, Xia YR, Wang XP, Shi YS, Park C, Castellani LW, Lusis AJ, Shih DM (2002) Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation 106:484–490CrossRefPubMedGoogle Scholar
  215. Yuting C, Rongliang Z, Zhongjian J, Yong J (1999) Flavonoids as superoxide scavengers and antioxidants. Free Radic Biol Med 9:19–21CrossRefGoogle Scholar
  216. Upston JM, Terentis AC, Stocker R (1999)Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement. FASEB J 13:977–994PubMedGoogle Scholar
  217. Ursini F, Tubaro F, Rong J, Sevanian A (1999) Optimization of nutrition: flavonoids and vascular protection. Nutr Rev 57:241–249PubMedGoogle Scholar
  218. Van het Hof KH, de Boer HS, Wiseman SA, Lien N, Westrate JA, Tijburg LB (1997) Consumption of green or black tea does not increase resistance of low density lipoprotein to oxidation in humans. Am J Clin Nutr 66:1125–1132PubMedGoogle Scholar
  219. Verlangieri A, Buxh M (1992) Effects of δ-tocopherol supplementation on experimentally induced primate atherosclerosis. J Am Coll Nutr 11:131–138PubMedGoogle Scholar
  220. Vinson JA, Hontz BA (1995) Phenol antioxidant index: Comparative antioxidant effectiveness of red and white wines. J Agric Food Chem 43:401–403CrossRefGoogle Scholar
  221. Vinson JA, Mandarano MA, Shuta DL, Bagchi M, Bagchi D (2002) Beneficial effects of a novel IH636 grape seed proanthocyanidin extract and a niacin-bound chromium in a hamster atherosclerosis model. Mol Cell Biochem 240:99–103CrossRefPubMedGoogle Scholar
  222. Visioli F, Micheletta F, Iuliano L (2002) How to select patient candidates for antioxidant treatment? Circulation 106:e195CrossRefPubMedGoogle Scholar
  223. Wallace AJ, Sutherland WH, Mann JI, Williams SM (2001) The effect of meals rich in thermally stressed olive oil and safflower oils on postprandial serum paraoxonase activity in patients with diabetes. Eur J Clin Nutr 55:951–958CrossRefPubMedGoogle Scholar
  224. Wen Y, Killalea S, Norris LA, Cooke T, Feely J (1999) Vitamin E supplementation in hyperlipidaemic patients: effect of increasing doses on in vitro and in vivo LDL oxidation. Eur J Clin Invest 29:1027–1034CrossRefPubMedGoogle Scholar
  225. Wakabayashi Y (1999) Effect of red wine consumption on low density lipoprotein oxidation and atherosclerosis in aorta and coronary artery in Watanabe heritable hyperlipidemic rabbits. J Agric Food Chem 47:4724–4730CrossRefPubMedGoogle Scholar
  226. Williams RJ, Motteram JM, Sharp CH, Gallagher PJ (1992) Dietary vitamin E and attenuation of early lesion development in modified Watanabe rabbits. Atherosclerosis 94:153–159CrossRefPubMedGoogle Scholar
  227. Witztum JL, and Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792PubMedGoogle Scholar
  228. Yamakoshi J, Kataoka S, Koga T, Ariga T (1999) Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 142:139–149CrossRefPubMedGoogle Scholar
  229. Yoshida N, Murase H, Kunieda T, Toyokuni S, Tanaka T, Terao J, Naito Y, Tanigawa T, Yoshikawa T (2002) Inhibitory effect of a novel water-soluble vitamin E derivative on atherosclerosis in rabbits. Atherosclerosis 162:111–117CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. Aviram
    • 1
  • M. Kaplan
    • 1
  • M. Rosenblat
    • 1
  • B. Fuhrman
    • 1
  1. 1.The Lipid Research LaboratoryTechnion Faculty of Medicin and Rambam Medical CenterHaifaIsrael

Personalised recommendations