Advertisement

Gene und Genom

Part of the Springer-Lehrbuch book series (SLB)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Miescher JF (1871) Hoppe-Seyler’s Med Chem Untersuchungen 4:441Google Scholar
  2. 2.
    Altmann R (1889) Anat u. Physiol. Physiol Abt 524Google Scholar
  3. 3.
    Entnommen aus: Mirsky AE (1968) The discovery of DNA. Sci Am 218:78–88 (June)Google Scholar
  4. 5.
    Levene PA, London ES (1929) The structure of thymonucleic acid. J Biol Chem 83:793–802Google Scholar
  5. 6.
    Levene PA, Bass LW (1931) Nucleic Acids. The Chemical Catalog CoGoogle Scholar
  6. 6.
    Arkwright JA (1921) Variation in bacteria in relation to agglutination both by salts and by specific serum. J Path Bact 24:36–60CrossRefGoogle Scholar
  7. 7.
    Griffith F (1923) The influence of immune serum on the biological properties of pneumococci. Rep. Public Health Med Subj 18:1–13Google Scholar
  8. 8.
    Griffith F (1928) The significance of pneumococcal types. J Hygiene 27:113–159CrossRefGoogle Scholar
  9. 9.
    Dawson MH (1930) The transformation of pneumococal types. J Exp Med 51:123–147CrossRefGoogle Scholar
  10. 10.
    Dawson MH, Sia RHP (1931) In vitro transformation of pneumococcal types. J Exp Med 54:701–710CrossRefGoogle Scholar
  11. 11.
    Alloway JL (1932) The transformation in vitro of R pneumococci into S forms of different specific types by use of filtered pneumococcus extracts. J Exp Med 55:91–99CrossRefGoogle Scholar
  12. 12.
    McCarty M (1985) The transforming principle: Discovering that genes are made of DNA. NortonGoogle Scholar
  13. 13.
    Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158CrossRefGoogle Scholar
  14. 14.
    Chargaff E (1950) Chemical specificity of nucleic acids and mechanism of their enzymic degradation. Experentia 6:201–209CrossRefGoogle Scholar
  15. 15.
    Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56PubMedCrossRefGoogle Scholar

Struktur und Topologie der DNA

  1. Champoux JJ (2002) Type IA DNA topoisomerases: strictly one step at a time. Proc Natl Acad Sci USA 99:11998–12000PubMedCrossRefGoogle Scholar
  2. Dennis C et al (2003) The double helix — 50 years. Nature 421:395–453Google Scholar
  3. Wang JC (2002) Cellular roles of DNA topoisomerases. Nature Revs MCB 3:430–440CrossRefGoogle Scholar
  4. Winchester G (2003) 50 years before the double helix. Curr Biol 13:R747–R749. [Erste Entdeckungen über Chromosomen als Genträger]PubMedCrossRefGoogle Scholar

Transposition

  1. Jordan IK et al (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Gen 19:68–72CrossRefGoogle Scholar
  2. Kazazian HH Jr (2004) Mobile elements: Drivers of genome evolution. Science 303:1626–1632PubMedCrossRefGoogle Scholar
  3. Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Gen 35:501–538CrossRefGoogle Scholar
  4. Stoye JP (2001) Endogenous retroviruses: still active after all these years? Curr Biol 11:R914–R916PubMedCrossRefGoogle Scholar
  5. Weiner AM (2002) SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 14:343–350PubMedCrossRefGoogle Scholar

Genomanalyse

  1. Chakravarti A (2002) A compelling genetic hypothesis for a complex disease. Proc Natl Acad Sci USA 99:4755–4756PubMedCrossRefGoogle Scholar
  2. Clark AG et al (eds) (2002) Genomes and evolution. Curr Opin Gen Dev 12, Heft 6Google Scholar
  3. Eichler EE, Sankoff D (2003) Structural dynamics of eukaryotic chromosome evolution. Science 301:793–797PubMedCrossRefGoogle Scholar
  4. Gibbs RA, Nelson DL (2003) Primate shadow play. Science 299:1331–1332 [Vergleichende Genomanalyse bei Primaten]PubMedCrossRefGoogle Scholar
  5. Henikoff S (2002) Near the edge of a chromosome’s “black hole”. Trends Gen 18:165–167CrossRefGoogle Scholar
  6. Ioannidis JPA (2003) Genetic associations: false or true? Trends Mol Med 9:135–138PubMedCrossRefGoogle Scholar
  7. Jasney BR et al (2003) Articles on genomic medicine. Science 302:587–608CrossRefGoogle Scholar
  8. Johnson JA, Evans WE (2002) Molecular diagnostics as a predictive tool: genetics of drug efficacy and toxicity. Trends Mol Med 8:300–305PubMedCrossRefGoogle Scholar
  9. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  10. Lynch M (2002) Gene duplication and evolution. Science 297:945–947PubMedCrossRefGoogle Scholar
  11. Olson MV, Varki A (2003) Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Revs Gen 4:20–28CrossRefGoogle Scholar
  12. Pääbo S (2003) The mosaic that is our genome. Nature 421:409–411PubMedCrossRefGoogle Scholar
  13. Pennisi E (2004) New sequence boosts rats’ research appeal. Science 303:455–458PubMedCrossRefGoogle Scholar
  14. Pennisi E (2003) Gene counters struggle to get the right answer. Science 301:1040–1041PubMedCrossRefGoogle Scholar
  15. Pennisi E et al (2003) Building on the DNA revolution. Science 300:278–297 [Artikelsammlung zum Thema Genomforschung]PubMedCrossRefGoogle Scholar
  16. Penny D (2004) Our relative genetics. Nature 427:208–209 [Über das Schimpansengenom]PubMedCrossRefGoogle Scholar
  17. Roses AD (2002) Genome-based pharmacogenetics and the pharmaceutical industry. Nature Revs Drug Disc 1:541–549CrossRefGoogle Scholar
  18. Snyder M, Gerstein M (2003) Defining genes in the genomics era. Science 300:258–260PubMedCrossRefGoogle Scholar
  19. Taylor JG et al (2001) Using genetic variation to study human disease. Trends Mol Med 7:507–512PubMedCrossRefGoogle Scholar
  20. Willard HF (2003) Tales of the Y chromosome. Nature 423:810–812PubMedCrossRefGoogle Scholar

Aus Sicht des Menschen, Trinucleotidvermehrung

  1. Cattaneo E et al (2002) The enigma of Huntington’s disease. Sci Am 287:92–97 [Dec]Google Scholar
  2. Dawson TD, Ginty DD (2002) CREB family transcription factors inhibit neuronal suicide. Nature Med 8:450–451PubMedCrossRefGoogle Scholar
  3. Rubinstein DC (2002) Lessons from animal models of Huntington’s disease. Trends Gen 18:202–209CrossRefGoogle Scholar
  4. Ross CA (2002) Polyglutamine pathogenesis. Neuron 35:819–822PubMedCrossRefGoogle Scholar
  5. Sanchez I et al (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421:373–379PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations