Einführung in die Zell- und Molekularbiologie

Part of the Springer-Lehrbuch book series (SLB)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sagan (Margulis) L (1967) On the origin of mitosing cells. J Theor Biol 14:225–274CrossRefGoogle Scholar
  2. 2.
    Margulis L (1970) Origin of eukaryotic cells. Yale Univ Press, New Haven/CTGoogle Scholar
  3. 3.
    Zuckerkandl E, Pauling L (1965). Molecules as documents of evolutionary history. J Theor Biol 8:357–365PubMedCrossRefGoogle Scholar
  4. 4.
    Zablen LB et al (1975) Phylogenetic origin of the chloroplast and prokaryotic nature of its ribosomal RNA. Proc Natl Acad Sci USA 72:2418–2422PubMedGoogle Scholar
  5. 5.
    Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090PubMedGoogle Scholar
  6. 6.
    Iwabe N et al (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359PubMedGoogle Scholar
  7. 7.
    Gogarten JP et al (1989) Evolution of the vacuolar H+-ATPase: Implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86:6661–6665PubMedGoogle Scholar
  8. 8.
    Woese C et al (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedGoogle Scholar
  9. 9.
    Doolittle WF (1999) Lateral genomics. Trends Cell Biol 24:M5–M8 (Dec)Google Scholar
  10. 10.
    Bult CJ et al (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073PubMedGoogle Scholar
  11. 11.
    Koonin EV et al (1997). Comparison of archaeal and bacterial genomes. Mol Microbiol 25:619–637PubMedCrossRefGoogle Scholar
  12. 12.
    Nelson KE et al (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329PubMedCrossRefGoogle Scholar
  13. 13.
    Ochman H et al (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304PubMedCrossRefGoogle Scholar
  14. 14.
    Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 95:9413–9417PubMedCrossRefGoogle Scholar
  15. 15.
    Jain R et al (1999) Horizontal gene transfer among genomes: The complexity hypothesis. Proc Natl Acad Sci USA 96:3801–3806PubMedCrossRefGoogle Scholar
  16. 16.
    Rivera MC et al (1998) Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci USA 95:6239–6244PubMedCrossRefGoogle Scholar
  17. 17.
    Rujan T, Martin W (2001) How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. Trends Gen 17:113–120CrossRefGoogle Scholar
  18. 18.
    Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41PubMedCrossRefGoogle Scholar
  19. 19.
    Brown JR (2003) Ancient horizontal gene transfer. Nature Revs Gen 4:121–132CrossRefGoogle Scholar

Allgemeine Literatur zu Mikrobiologie und Virologie

  1. Fields BN et al (eds) (2001) Virology. Lippincott, Philadelphia New YorkGoogle Scholar
  2. Madigan MT (2002) Brock — Biology of Microorganisms, 10. Ausg. Prentice-Hall, Upper Saddle River/NJGoogle Scholar

Weitere Lektüre

  1. Ash C et al (2002) Series of articles on environmental microbiology. Science 296:1055–1082CrossRefGoogle Scholar
  2. Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706PubMedCrossRefGoogle Scholar
  3. Beckman M (2001) Virus infects cell: live and uncut. Science 294:1803PubMedCrossRefGoogle Scholar
  4. Benton, MJ, Ayala FJ (2003) Dating the tree of life. Science 300:1698–1700PubMedCrossRefGoogle Scholar
  5. Brown JR (2003) Ancient horizontal gene transfer. Nature Revs Gen 4:121–132CrossRefGoogle Scholar
  6. Copley J (2002) All at sea. Nature 415:572–574 [über Archaebaktererien im Meer]PubMedCrossRefGoogle Scholar
  7. Couzin J (2002) Active poliovirus baked from scratch. Science 297:174–175PubMedCrossRefGoogle Scholar
  8. Dacks JB, Doolittle WF (2001) Reconstructing/deconstructing the earliest eukaryotes: how comparative genomics can help. Cell 107:419–425PubMedCrossRefGoogle Scholar
  9. Doolittle WF (2000) Uprooting the tree of life. Sci Am 282:90–95 (Feb.)Google Scholar
  10. Ferber D (2004) Microbes made to order. Science 303:158–161PubMedCrossRefGoogle Scholar
  11. Madigan MT, Marrs BL (1997) Extremophiles. Sci Am 276:82–87 (April)Google Scholar
  12. Orgel LE (1994) The origin of life on the Earth. Sci Am 271:77–83 (Okt.)Google Scholar
  13. Pace, NR (2001) The universal nature of biochemistry. Proc Nat’l Acad Sci USA 98:805–808 [über Kriterien für Leben außerhalb der Erde]CrossRefGoogle Scholar
  14. Relman DA (2002) The human body as microbial observatory. Nature Genetics 30:131–132PubMedCrossRefGoogle Scholar
  15. Stone R (2002) Stalin’s forgotten cure. Science 298:728–731 [über den Einsatz von Bakteriophagen zur Bekämpfung von Infektionen]PubMedCrossRefGoogle Scholar
  16. Thomas DN, Dieckmann GS (2002) Antarctic sea ice — a habitat for extremophiles. Science 295:641–644PubMedCrossRefGoogle Scholar
  17. Ward BB (2002) How many species of prokaryotes are there? Proc Nat’l Acad Sci USA 99:10234–10236CrossRefGoogle Scholar
  18. Webster RG (2001) A molecular whodunit. Science 293: 1773–1775 [über das Influenza-Virus]PubMedGoogle Scholar
  19. Wüthrich B (2003) Chasing the fickle swine flu. Science 299:1502–1505 [über Influenza-Epidemien]CrossRefGoogle Scholar
  20. Aus Sicht des Menschen: Austausch geschädigter Zellen und OrganeGoogle Scholar
  21. Holden C, Vogel G (2002) Plasticity: time for a reappraisal? Science 296:2126–2129PubMedCrossRefGoogle Scholar
  22. Lindvall O, Mckay R (2003) Brain repair by cell replacement and regeneration. Proc Nat’l Acad Sci USA 100:7430–7431CrossRefGoogle Scholar
  23. Surani MA (2004) How to make eggs and sperm. Nature 427:106–107 [über ES-Zellen]PubMedCrossRefGoogle Scholar
  24. Verfaillie CM (2002) Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 12:502–508PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations