Advertisement

Combined Processing of GPS Data from Ground Station and LEO Receivers in a Global Solution

  • U. Hugentobler
  • A. Jäggi
  • S. Schaer
  • G. Beutler
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 128)

Abstract

GPS plays an important role for the definition of the terrestrial reference frame and for the monitoring of Earth orientation parameters based on observations acquired by the global IGS (International GPS Service) tracking network. With an increasing number of low Earth orbiters (LEOs) carrying high-quality dual-frequency GPS receivers the question arises whether the inclusion of orbiter receiver data may help to further improve parameters estimated in a global GPS data analysis.

In the following study the satellite JASON-1 was introduced a posteriori into the global analysis performed at the CODE Analysis Center of the IGS. A relatively simple strategy was used allowing for a double difference data analysis applying correct correlations and taking advantage of the fact that preprocessed files with fixed ambiguities were already available for the ground network.

An improvement of the LEO orbit as a result from the combined processing could not be clearly shown. The impact on GPS orbits and geocenter coordinates caused by the inclusion of JASON is, on the other hand, significantly larger than expected from the addition of one receiver to a 120 station tracking network. This indicates a potential for improvements with respect to these parameters by means of a combined processing. Modeling insufficiencies and inconsistencies, however, need to be solved to reach this goal.

Key words

Low Earth orbiters Orbit determination Single-step approach Two-step approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beutler, G., E. Brockmann, W. Gurtner, U. Hugentobler, L. Mervart, M. Rothacher (1994). Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscripta Geodetica, 19, pp. 367–386.Google Scholar
  2. Boomkamp, H. (2002). The CHAMP orbit comparison campaign. In: First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, C. Reigber et al. (eds), pp. 53–58, Springer, Berlin, ISBN 3-540-00206-5. http://nng.esoc.esa.de/gps/igsleo.htmlGoogle Scholar
  3. Ferland, R. (2002). Activities of the international GPS Service (IGS) Reference Frame Working Group. in Vistas for Geodesy in the New Millennium, J. Adam et al. (eds), International Association of Geodesy Symposia 125, pp. 3–8, Springer, 2002.Google Scholar
  4. Haines, B., W. Bertiger, S. Desai, D. Kuang, T. Munson, L. Young, P. Willis (2002). Initial Orbit Determination Results for Jason-l: Towards a I-cm Orbit. In: Proceedings of ION GPS 2002, Portland, OR, September 24–27, 2002. To be published in Navigation.Google Scholar
  5. Hugentobler, U., S. Schaer, P. Fridez (eds) (2001). Bernese GPS Software Version 4.2. Astronomical Institute, University of Berne, February 2001.Google Scholar
  6. Hugentobler, U., S. Schaer, T. Springer, G. Beutler, H. Bock, R. Dach, D. Ineichen, L. Mervart, M. Rothacher, U. Wild, A. Wiget, E. Brockmann, G. Weber, H. Habrich, C. Boucher (2003). CODE IGS Analysis Center Technical Report 2002. In: IGS 2002 Technical Reports, K. Gowey et al. (eds). IGS Central Bureau, JPL, CA, USA, in preparation.Google Scholar
  7. Hugentobler, U., G. Beutler (2003). Strategies for precise orbit determination for low Earth orbiters using the GPS. In Earth Gravity Field from Space — From Sensors to Earth Sciences, edited by G. Beutler et al. (eds). Space Science Reviews, Kluwer, Dortrecht, in press.Google Scholar
  8. Rim, H. J., B. E. Schutz, P. A. M. Abusali, B. D. Tapley (1995). Effects of GPS orbit accuracy on GPS-determined TOPEX/POSEIDON orbit. In: Proceedings of ION GPS-95, pp. 613–617, September 12–15, 1995.Google Scholar
  9. Rocken, C., Y.-H. Kuo, W. Wchreiner, D. Hunt, S. Sokolovskiy, C. McCormick (2000). COSMIC System Description. Terrestrial Atmospheric and Oceanic Sciences, 11(1), pp. 21–52.Google Scholar
  10. Visser, P. N. A. M., J. van den IJssel (2001). GPS-based precise orbit determination of the very low Earth-orbiting gravity mission GOCE. J. of Geodesy, 74, pp. 590–602.CrossRefGoogle Scholar
  11. Willis, P., B. Haines, Y. Bar-Sever, W. Bertiger, R. Mueller-schoen, D. Kuang, S. Desai, (2003). TOPEX/JASON Combined GPS/DORIS Orbit Determination in the Tandem Phase. Adv Space Res., 31(8), pp. 1941–1946.CrossRefGoogle Scholar
  12. Zhu, S., H. Neumayer, F. H. Massmann, C. Shi, C. Reigber (2002). Impact of different data combinations on the CHAMP orbit determination. In: Proceedings of the IGS Workshop 2002, Ottawa, Canada, April 8–12, 2002, in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • U. Hugentobler
    • 1
  • A. Jäggi
    • 1
  • S. Schaer
    • 1
  • G. Beutler
    • 1
  1. 1.Astronomical InstituteUniversity of BerneBerneSwitzerland

Personalised recommendations