Advertisement

Host and Non-Host Impact on the Physiology of the AM Symbiosis

  • Horst Vierheilig
  • Bert Bago
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 4)

Keywords

Arbuscular Mycorrhizal Fungus Root Exudate Spore Germination Arbuscular Mycorrhiza Hyphal Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular mycorrhizal fungi. Plant Soil 192:71–79CrossRefGoogle Scholar
  2. Avio L, Sbrana C, Giovannetti M (1990) The response of different species of Lupinus to VAM endophytes. Symbiosis 9:321–323Google Scholar
  3. Azcón-Aguilar C, Bago B, Barea JM (1999) Saprophytic growth of arbuscular mycorrhizal fungi In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 391–407Google Scholar
  4. Bago B, Vierheilig H, Piché Y Azcón-Aguilar C (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol 133:273–280Google Scholar
  5. Bago B, Azcón-Aguilar C, Piché Y (1998a) Architecture and developmental dynamics of the externalmycelium of the arbuscular-mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90:52–62Google Scholar
  6. Bago B, Azcón-Aguilar C, Goulet A, Piché Y (1998b) Branched absorbing structures (BAS): a feature of the extraradical mycelium of the symbiotic arbuscular mycorrhizal fungi. New Phytol 139:375–388Google Scholar
  7. Bago B, Pfeffer PE, Douds DD Jr, Brouillette J, Bécard G, Shachar-Hill Y (1999) Carbon metabolism in arbuscular mycorrhizal spores as revealed by NMR spectroscopy. Plant Physiol 121:263–271PubMedCrossRefGoogle Scholar
  8. Bago B, Shachar-Hill Y, Pfeffer PE (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957PubMedCrossRefGoogle Scholar
  9. Bago B, Dickson S, Cano C, Barea JM, Smith SE (2005) Interactions between wildtype and mycorrhiza-defective mutant tomato non-transformed roots with Glomus intraradices in monoxenic cultures. New Phytol (in press)Google Scholar
  10. Balaji B, Poulin MJ, Vierheilig H, Piché Y (1995) Responses of an arbuscular mycorrhizal fungus, Gigaspora margarita, to exudates and volatiles fromthe Ri T-DNA-transformed roots of nonmycorrhizal and mycorrhizal mutants of Pisum sativum L. sparkle. Exp Mycol 19:275–283CrossRefGoogle Scholar
  11. Bansal M, Mukerji KG (1994) Positive correlation between VAM-induced chances in root exudation and mycorrhizosphere mycoflora. Mycorrhiza 5:39–44CrossRefGoogle Scholar
  12. Baptista MJ, Siqueira JO (1994) Efeitode flavonóides na germinacão de esporos e crescimento assimbiotico do fungo micorrÍzico arbuscular Gigaspora gigantea. Rev Bras Fisiol Veg 6:127–134Google Scholar
  13. Barker SJ, Stummer B, Gao L, Dispain I, O’Connor TJ, Smith SE (1998) Amutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation. Plant J 15:791–797CrossRefGoogle Scholar
  14. Bécard G, Piché Y (1989a) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325PubMedGoogle Scholar
  15. Bécard G, Piché Y (1989b) New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 112:77–83Google Scholar
  16. Bécard G, Piché Y (1990) Physiological factors determining vesicular-arbuscular mycorrhizal formation in host and nonhost Ri T-DNA transformed roots. Can J Bot 68:1260–1264Google Scholar
  17. Bécard G, Piché Y, Fortin AJ (1989) Some aspects on the biotrophy of VAM fungi. Agric Ecosyst Environ 29:29–33Google Scholar
  18. Bécard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 58:821–825PubMedGoogle Scholar
  19. Bécard G, Taylor LP, Douds DD, Pfeffer PE, Doner LW (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbiosis. Mol Plant Microb Interact 8:252–258Google Scholar
  20. Buee M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microb Interact 13:693–698CrossRefGoogle Scholar
  21. Chabot S, Bel-Rhlid R, Chênevert R, Piché Y (1992) Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoids compounds under CO2-enriched conditions. New Phytol 122:461–467Google Scholar
  22. David-Schwartz R, Badani H, Wininger S, Levy AA, Galili G, Kapulnik Y (2001) Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extraradical hyphae. Plant J 27:561–569PubMedCrossRefGoogle Scholar
  23. David-Schwartz R, Gadkar V, Wininger S, Bendov R, Galili G, Levy AA, Kapulnik Y (2003) Isolation of a premycorrhizal infection (pmi2)mutant of tomato, resistant to arbuscular mycorrhizal fungal colonization. Mol Plant Microb Interact 16:382–388Google Scholar
  24. Diop TA, Bécard G, Piché Y (1992) Long-term in vitro culture of an endomycorrhizal fungus, Gigaspora margarita, on Ri T-DNA transformed roots of carrot. Symbiosis 12:249–259Google Scholar
  25. Douds DD, Nagahashi G (2000) Signaling and recognition events prior to colonization of roots by arbuscular mycorrhizal fungi. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. APS Press, St. Paul, Minnesota, pp 11–18Google Scholar
  26. Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of nonmycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L. and fababean (Vicia faba L.) Plant Sci 60:215–222Google Scholar
  27. El-Atrach F, Vierheilig H, Ocampo JA (1989) Influence of non-host plants on vesicular-arbuscular mycorrhizal infection of host plants and on spore germination. Soil Biol Biochem 21:161–163CrossRefGoogle Scholar
  28. Elias KS, Safir GR (1987) Hyphal elongation of Glomus fasciculatus in response to root exudates. Appl Environ Microbiol 53:1928–1933PubMedGoogle Scholar
  29. Elsen A, Declerck S, De Waele D (2001) Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11:49–51CrossRefGoogle Scholar
  30. Elsen A, Declerck S, De Waele D (2003) Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 69:4308–4311PubMedCrossRefGoogle Scholar
  31. Filion M, St.-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533CrossRefGoogle Scholar
  32. Fortin JA, Bécard G, Declerck S, Dalpé Y, St.-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20CrossRefGoogle Scholar
  33. Gadkar V, David-Schwartz R, Nagahashi G, Douds DD, Wininger S, Kapulnik Y (2003a) Root exudate of pmi tomato mutant M161 reduces AM fungal proliferation in vitro. FEMS Microbiol Lett 223:193–198PubMedCrossRefGoogle Scholar
  34. Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y (2003b) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127:1493–1499Google Scholar
  35. Gemma J, Koske R (1988) Seasonal variation in spore abundance and dormancy of Gigaspora gigantea and in mycorrhizal inoculum potential of a dune soil. Mycologia 80:211–216Google Scholar
  36. Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255Google Scholar
  37. Gianinazzi-Pearson V, Gianinazzi S, Guillemin JP, Trouvelot A, Duc G (1991) Genetic and cellular analysis of resistance to vesicular arbuscular (VA) mycorrhizal fungi in pea mutants. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 336–342Google Scholar
  38. Giovannetti M (2000) Spore germination and pre-symbioticmycelial growth. In: Kapulnik Y, Douds DD (eds) Arbuscularmycorrhizas: physiology and function. Kluwer, Dordrecht, pp 47–68Google Scholar
  39. Giovannetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8:123–130CrossRefGoogle Scholar
  40. Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993a) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125:587–594Google Scholar
  41. Giovannetti M, Avio L, Sbrana C, Citernesi AS (1993b) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytol 123:115–122Google Scholar
  42. Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127:703–709Google Scholar
  43. Graham JH (1982) Effect of citrus exudates on germination of chlamydospores of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeum. Mycologia 74:831–835Google Scholar
  44. Green NE, Graham SO, Schenck NC (1976) The influence of pH on the germination of vesicular-arbuscular mycorrhizal spores. Mycologia 68:929–934Google Scholar
  45. Hepper CM (1984) Regulation of spore germination of the vesicular-arbuscular mycorrhizal fungus Acaulospora laevis by soil pH. Trans Br Mycol Soc 83:154–156Google Scholar
  46. Hepper C, Smith G (1976) Observations on the germination of Endogone spores. Trans Br Mycol Soc 66:189–219Google Scholar
  47. Juge C, Samson J, Bastien C, Vierheilig H, Piché Y (2002) Breaking spore dormancy of the AM fungus Glomus intraradices. Mycorrhiza 12:37–42PubMedCrossRefGoogle Scholar
  48. Kape R, Wex K, Parniske M, Goerge E, Wetzel A, Werner D (1992) Legume root metabolites and VA-mycorrhiza development. J Plant Physiol 141:54–60Google Scholar
  49. Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J, Barker DG, Bécard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD 11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962PubMedCrossRefGoogle Scholar
  50. Kues U, Granado JD, Hermann R, Boulianne RP, Kertesz-Chaloupkova K, Aebi M (1998) The A mating type and blue light regulate all known differentiation processes in the basidiomycete Coprinus cinereus. Mol Gen Genet 260:81–91PubMedGoogle Scholar
  51. Larose G, Chenevert R, Moutoglis P, Gagne S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339CrossRefGoogle Scholar
  52. Le Tacon F, Skinner FA, Mosse B (1983) Spore germination and hyphal growth of a vesicular-arbuscular mycorrhizal fungus, Glomus mosseae (Gerdeman and Trappe), under decreased oxygen and increased carbon dioxide concentrations. Can J Microbiol 29:1280–1285CrossRefGoogle Scholar
  53. Linderman RG, Paulitz TC (1990) Mycorrhizal-rhizobacterial interactions. In: Hornby D, Cook RJ, Henis Y, Ko WH, Rovira AD, Schippers B, Scott PR (eds) Biological control of soil-borne plant pathogens. CAB International, Wallingford, pp 261–283Google Scholar
  54. Lioussanne L, Jolicoeur M, St. Arnaud M (2003) Effects of the alteration of tomato root exudation by Glomus intraradices colonization on Phytophthora parasitica var. Nicotianae zoospores. In: Proc 4th Int Conf Mycorrhizae (ICOM4), MontréalGoogle Scholar
  55. Marschner P, Crowley DE, Lieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302Google Scholar
  56. Morandi D (1996) Occurrence of phytoalexins and phenolic compounds on endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251CrossRefGoogle Scholar
  57. Morandi D, Branzanti B, Gianinazzi-Pearson V (1992) Effect of some plant flavonoids on in vitro behaviour of an arbuscular mycorrhizal fungus. Agronomie 12:811–816Google Scholar
  58. Morris PF, Ward EWB (1992) Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae by isoflavones. Physiol Mol Plant Pathol 40:17–22CrossRefGoogle Scholar
  59. Mosse B (1988) Some studies relating to “independent” growth of vesicular-arbuscular endophytes. Can J Bot 66:2533–2540CrossRefGoogle Scholar
  60. Mosse B, Hepper CM (1975) Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–223CrossRefGoogle Scholar
  61. Nagahashi G, Douds DD (1999) Rapid and sensitive bioassay to study signals between root exudates and arbuscular mycorrhizal fungi. Biotechnol Tech 13:893–897CrossRefGoogle Scholar
  62. Nagahashi G, Douds DD (2000) Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol Res 104:1453–1464CrossRefGoogle Scholar
  63. Nagahashi G, Douds DD (2003) Action spectrum for the induction of hyphal branches of an arbuscular mycorrhizal fungus: exposure sites versus branching sites. Mycol Res 107:1075–1082PubMedCrossRefGoogle Scholar
  64. Nagahashi G, Douds DD, Abney GD (1996) Phosphorus amendment inhibits hyphal branching of the VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation. Mycorrhiza 6:403–408CrossRefGoogle Scholar
  65. Nagahashi G, Douds DD, Buee M (2000) Light-induced hyphal branching of germinated AM fungal spores. Plant Soil 219:71–79CrossRefGoogle Scholar
  66. Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57:434–439PubMedGoogle Scholar
  67. Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than bymycorrhizal strawberry roots. Mycol Res 104:1069–1073CrossRefGoogle Scholar
  68. Oba H, Tawaraya K, Wagatsuma T (2002) Inhibition of pre-symbiotic hyphal growth of arbuscular mycorrhizal fungus Gigaspora margarita by root exudates of Lupinus spp. Soil Sci Plant Nutr 48:117–120Google Scholar
  69. Phillips DA, Tsai SM (1992) Flavonoids as plant signals to rhizosphere microbes. Mycorrhiza 1:55–58CrossRefGoogle Scholar
  70. Pinior A, Wyss U, Piché Y, Vierheilig H (1999) Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Can J Bot 77:891–897CrossRefGoogle Scholar
  71. Poulin MJ, Bel-Rhlid R, Piche Y, Chenevert R (1993) Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment. J Chem Ecol 10:2317–2327Google Scholar
  72. Powell CL (1976) Development of mycorrhizal infection fromEndogone spores and infected root fragments. Trans Br Mycol Soc 66:439–445CrossRefGoogle Scholar
  73. Safir GR (1986) VA Mycorrhizae: an ecophysiological approach. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, pp 1–3Google Scholar
  74. Schenck NC, Graham SO, Green NE (1975) Temperature and light effect on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi. Mycologia 67:1189–1192PubMedGoogle Scholar
  75. Schreiner RP, Koide RT (1993a) Stimulation of vesicular-arbuscular mycorrhizal fungi by mycothophic and nonmycotrophic plant root systems. Appl Environ Microbiol 59:2750–2752PubMedGoogle Scholar
  76. Schreiner RP, Koide RT (1993b) Mustards, mustard oils and mycorrhizas. New Phytol 123:107–113Google Scholar
  77. Simoneau P, Louisy-Louis N, Plenchette C, Strullu DG (1994) Accumulation of new polypeptides in Ri-T-DNA-transformed roots of tomato (Lycopersicon esculentum) during the development of vesicular-arbuscular mycorrhizae. Appl Environ Microbiol 60:1810–1813PubMedGoogle Scholar
  78. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  79. Sood SG (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227Google Scholar
  80. St.-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f.sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431–438Google Scholar
  81. St.-Arnaud M, Hamel C, Vimard B, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332CrossRefGoogle Scholar
  82. Straney D, Khan R, Tan R, Bagga S (2002) Host recognition by pathogenic fungi through plant flavonoids. In: Buslig B, Manthey JA, Tyler BM (eds) Flavonoids in cell functions. Kluwer, New York, pp 9–22Google Scholar
  83. Tamasloukht MB, Séjalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478PubMedCrossRefGoogle Scholar
  84. Tawaraya K, Watanabe S, Yoshida E, Wagatsuma T (1996) Effect of onion (Allium cepa) root exudates on the hyphal growth of Gigaspora margarita. Mycorrhiza 6:57–59Google Scholar
  85. Tommerup IC (1983) Temperature relations of spore germination and hyphal growth of vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 81:381–384Google Scholar
  86. Tommerup IC (1984) Development of infection by a vesicular-arbuscular mycorrhizal fungus in Brassica napus L. and Trifolium subterraneum L. New Phytol 98:487–495Google Scholar
  87. Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488PubMedGoogle Scholar
  88. Tyler BM, Wu MH, Wang JM, Cheung W, Morris PF (1996) Chemotactic preferences and strain variation in the response of Phytophthora sojae zoospores to host isoflavones. Appl Environ Microbiol 62:2811–2817PubMedGoogle Scholar
  89. Vazquez MM, Cesar S, Azcon R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272Google Scholar
  90. Vierheilig H(2004) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can J Bot 82(8):1166–1176Google Scholar
  91. Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell functions. Kluwer, New York, pp 23–39Google Scholar
  92. Vierheilig H, Alt M, Mohr U, Boller T, Wiemken A (1994) Ethylene biosynthesis and activities of chitinase and ß-1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J Plant Physiol 143:337–343Google Scholar
  93. Vierheilig H, Alt M, Mäder P, Boller T, Wiemken A (1995) Spreading of Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus, across the rhizosphere of host and non-host plants. Soil Biol Biochem 27:1113–1115CrossRefGoogle Scholar
  94. Vierheilig H, Iseli B, Alt M, Raikhel N, Wiemken A, Boller T (1996) Resistance of Urtica dioica to mycorrhizal colonization: a possible involvement of Urtica dioica agglutinin. Plant Soil 183:131–136CrossRefGoogle Scholar
  95. Vierheilig H, Bago B, Albrecht C, Poulin MP, Piché Y (1998) Flavonoids and arbuscular-mycorrhizal fungi. In: Manthey JA, Buslig BS (eds) Flavonoids in the living system. Plenum, New York, pp 9–33Google Scholar
  96. Vierheilig H, Bennett R, Kiddle G, Kaldorf M, Ludwig-Müller J (2000) Differences in glucosinolate patterns and arbuscular-mycorrhizal status of glucosinolate-containing plant species. New Phytol 146:343–352CrossRefGoogle Scholar
  97. Vierheilig H, Lerat S, Piché Y (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by G. mosseae. Mycorrhiza 13:167–170PubMedCrossRefGoogle Scholar
  98. Villegas J, Fortin JA (2001) Phosphorus solubilization and pH changes as a results of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NH4+ as nitrogen source. Can J Bot 79:865–870CrossRefGoogle Scholar
  99. Villegas J, Fortin JA (2002) Phosphorus solubilization and pH changes as a results of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 as nitrogen source. Can J Bot 80:571–576CrossRefGoogle Scholar
  100. Williams PG (1992) Axenic culture of arbuscular mycorrhizal fungi. Methods Microbiol 24:203–220Google Scholar
  101. Yap HL, Schultze M (2003) Responses of the non-host plant, A. thaliana, to arbuscular mycorrhizal fungi. In: Proc 4th Int Conf Mycorrhizae (ICOM4), MontréalGoogle Scholar
  102. Yokosawa R, Kunninaga S, Sekizaki H (1986) Aphanomyces euteiches zoospore attractant isolated from pea root prunetin. Ann Phytopathol Soc Jpn 52:809–816Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Horst Vierheilig
    • 1
  • Bert Bago
    • 2
  1. 1.Institut für PflanzenschutzUniversität für Bodenkultur WienWienAustria
  2. 2.Estación Experimental del ZaidÍn, CSICGranadaSpain

Personalised recommendations