Interaction of Arbuscular Mycorrhizal Fungi with Soil-Borne Pathogens and Non-Pathogenic Rhizosphere Micro-Organisms

  • Marc St Arnaud
  • Annemie Elsen
Part of the Soil Biology book series (SOILBIOL, volume 4)


Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Spore Germination Soil Biol Hairy Root Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79CrossRefGoogle Scholar
  2. Artursson V, Jansson JK (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol 69:6208–6215PubMedCrossRefGoogle Scholar
  3. Azcón R (1987) Germination and hyphal growth of Glomus mosseae in vitro: effects of rhizosphere bacteria and cell-free culture media. Soil Biol Biochem 19:417–419Google Scholar
  4. Azcón R (1989) Selective interaction between free-living rhizosphere bacteria and vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 21:639–644Google Scholar
  5. Azcón-Aguilar C, Diaz-Rodriguez R, Barea JM (1986) Effects of soil microorganisms on spore germination and growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Trans Br Mycol Soc 86:337–340Google Scholar
  6. Bago B, Azcón-Aguilar C, Goulet A, Piché Y (1998) Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139:375–388Google Scholar
  7. Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124PubMedCrossRefGoogle Scholar
  8. Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218Google Scholar
  9. Benhamou N, Fortin JA, Hamel C, St-Arnaud M, Shatilla A (1994) Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp. chrysanthemi. Phytopathology 84:958–968Google Scholar
  10. Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996a) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010PubMedGoogle Scholar
  11. Bianciotto V, Minerdi D, Perotto S, Bonfante P (1996b) Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123–131CrossRefGoogle Scholar
  12. Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509PubMedCrossRefGoogle Scholar
  13. Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microb Interact 14:695–700Google Scholar
  14. Calvet C, Barea JM, Pera J (1992) In vitro interactions between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol Biochem 24:775–780CrossRefGoogle Scholar
  15. Chabot S (1991) Utilisation d’un système de culture monoxénique, comme modèle pour l’étude des endomycorhizes à vésicules et arbuscules. Thèse MSc, Université Laval, QuébecGoogle Scholar
  16. Datnoff LE, Nemec S, Pernezny K (1995) Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5:427–431CrossRefGoogle Scholar
  17. Elsen A, Declerck S, De Waele D (2001) Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11:49–51CrossRefGoogle Scholar
  18. Elsen A, Declerck S, De Waele D (2003) Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 69:4308–4311PubMedCrossRefGoogle Scholar
  19. Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533CrossRefGoogle Scholar
  20. Fracchia S, Mujica MT, Garcia-Romera I, Garcia-Garrido JM, Martin J, Ocampo JA, Godeas A (1998) Interactions between Glomus mosseae and arbuscular mycorrhizal sporocarp-associated saprophytic fungi. Plant Soil 200:131–137CrossRefGoogle Scholar
  21. Fracchia S, Godeas A, Scervino JM, Sampedro I, Ocampo JA, Garcia-Romera I (2003) Interaction between the soil yeast Rhodotorula mucilaginosa and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Soil Biol Biochem 35:701–707CrossRefGoogle Scholar
  22. Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants — the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56CrossRefGoogle Scholar
  23. Gryndler M, Hrselova H, Striteska D (2000) Effect of soil bacteria on hyphal growth of the arbuscular mycorrhizal fungus Glomus claroideum. Folia Microbiol 45:545–551Google Scholar
  24. Herrera-Medina MJ, Gagnon H, Piche Y, Ocampo JA, Garcia-Garrido JM, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993–998Google Scholar
  25. Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924PubMedCrossRefGoogle Scholar
  26. Johnson D, Leake JR, Read DJ (2002) Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biol Biochem 34:1521–1524Google Scholar
  27. Johnson, D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515CrossRefGoogle Scholar
  28. Khaliq A, Bagyaraj DJ (2000) Colonization of arbuscular mycorrhizal fungi on Ri T-DNA transformed roots in synthetic medium. Indian J Exp Biol 38:1147–1151PubMedGoogle Scholar
  29. Klironomos JN, Bednarczuk EM, Neville J (1999) Reproductive significance of feeding on saprobic and arbuscular mycorrhizal fungi by the collembolan, Folsomia candida. Funct Ecol 13:756–761CrossRefGoogle Scholar
  30. Knee EM, Gong FC, Gao MS, Teplitski M, Jones AR, Foxworthy A, Mort AJ, Bauer WD (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant Microb Interact 14:775–784CrossRefGoogle Scholar
  31. Labour K, Jolicoeur M, St-Arnaud M (2003) Arbuscular mycorrhizal responsiveness of in vitro tomato root lines is not related to growth and nutrient uptake rates. Can J Bot 81:645–656CrossRefGoogle Scholar
  32. Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJJ (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256PubMedCrossRefGoogle Scholar
  33. Lioussanne L, Jolicoeur M, St-Arnaud M (2003) Effects of the alteration of tomato root exudation by Glomus intraradices colonization on Phytophthora parasitica var. nicotianae zoospores. In: Proc 4th Int Conf Mycorrhizae, MontréalGoogle Scholar
  34. Ludwig-Muller J, Bennett RN, Garcia-Garrido JM, Piché Y, Vierheilig H (2002) Reduced arbuscular mycorrhizal root colonization in Tropaeolum majus and Carica papaya after jasmonic acid application can not be attributed to increased glucosinolate levels. J Plant Physiol 159:517–523Google Scholar
  35. Maraun M, Martens H, Migge S, Theenhaus A, Scheu S (2003) Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39:85–95CrossRefGoogle Scholar
  36. Mayo K, Davis R, Motta J (1986) Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 78:426–431Google Scholar
  37. McAllister CB, Garcia Romera I, Godeas A, Ocampo JA (1994) In vitro interactions between Trichoderma koningii, Fusarium solani and Glomus mosseae. Soil Biol Biochem 26:1369–1374Google Scholar
  38. McAllister CB, Garcia-Romera I, Martin J, Godeas A, Ocampo JA (1995) Interaction between Aspergillus niger van Tiegh and Glomus mosseae (Nicol and Gerd) Gerd and Trappe. New Phytol 129:309–316Google Scholar
  39. McAllister CB, Garcia-Garrido JM, Garcia-Romera I, Godeas A, Ocampo JA (1996) In vitro interaction between Alternaria alternata, Fusarium equiseti and Glomus mosseae. Symbiosis 20:163–174Google Scholar
  40. McGovern RJ, Datnoff LE, Tripp L (1992) Effect of mixed infection and irrigation method on colonization of tomato roots by Trichoderma harzianum and Glomus intraradices. Proc Fla State Hortic Soc 105:361–363Google Scholar
  41. Minerdi D, Bianciotto V, Bonfante P (2002) Endosymbiotic bacteria in mycorrhizal fungi: from their morphology to genomic sequences. Plant Soil 244:211–219CrossRefGoogle Scholar
  42. Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520PubMedGoogle Scholar
  43. Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infections in transformed Ri T-DNA roots grown axenically. Phytopathology 77:1045–1050Google Scholar
  44. Nuutila AM, Vestberg M, Kauppinen V (1995) Infection of hairy roots of strawberry (Fragaria × Ananassa Duch) with arbuscular mycorrhizal fungus. Plant Cell Rep 14:505–509CrossRefGoogle Scholar
  45. Olsson PA, Bååth E, Jakobsen I, Soderstrom B (1996) Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biol Biochem28:463–470CrossRefGoogle Scholar
  46. Pfeffer PE, Bago B, Shachar-Hill Y (2001) Exploring mycorrhizal function with NMR spectroscopy. New Phytol 150:543–553CrossRefGoogle Scholar
  47. Pinior A, Wyss U, Piché Y, Vierheilig H (1999) Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Can J Bot 77:891–897CrossRefGoogle Scholar
  48. Posta K, Marschner H, Römheld V (1994) Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza 5:119–124CrossRefGoogle Scholar
  49. Ravnskov S, Nybroe O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol 142:13–122CrossRefGoogle Scholar
  50. Ronn R, Gavito M, Larsen J, Jakobsen I, Frederiksen H, Christensen S (2002) Response of free-living soilprotozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biol Biochem 34:923–932Google Scholar
  51. Rousseau A, Benhamou N, Chet I, Piché Y (1996) Mycoparasitism of the extramatrical phase of Glomus intraradices by Trichoderma harzianum. Phytopathology 86:434–443Google Scholar
  52. Ruiz-Lozano JM, Bonfante P (2000) A Burkholderia strain living inside the arbuscular mycorrhizal fungus Gigaspora margarita possesses the vacB gene, which is involved in host cell colonization by bacteria. Microb Ecol 39:137–144PubMedCrossRefGoogle Scholar
  53. Ryan NA, Duffy EM, Cassells AC, Jones PW (2000) The effect of mycorrhizal fungi on the hatch of potato cyst nematodes. Appl Soil Ecol 15:233–240CrossRefGoogle Scholar
  54. Schreiner RP, Bethlenfalvay GJ (2003) Crop residue and Collembola interact to determine the growth of mycorrhizal pea plants. Biol Fertil Soils 39:1–8CrossRefGoogle Scholar
  55. Simoneau P, Louisy-louis N, Plenchette C, Strullu DG (1994) Accumulation of new polypeptides in Ri T-DNA-transformed roots of tomato (Lycopersicon esculentum) during the development of vesicular-arbuscular mycorrhizae. Appl Environ Microbiol 60:810–1813Google Scholar
  56. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431–438Google Scholar
  57. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332CrossRefGoogle Scholar
  58. Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50:251–260PubMedCrossRefGoogle Scholar
  59. Tylka GL, Hussey RS, Roncadori RW (1991) Axenic germination of vesicular-arbuscular mycorrhizal fungi — effects of selected Streptomyces species. Phytopathology 81:54–759Google Scholar
  60. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72Google Scholar
  61. Vierheilig H, Garcia-Garrido JM, Wyss U, Piché Y (2000) Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi. Soil Biol Biochem 32:589–595CrossRefGoogle Scholar
  62. Villegas J, Fortin JA (2001) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NH4+ as nitrogen source. Can J Bot 79:865–870CrossRefGoogle Scholar
  63. Villegas J, Fortin JA (2002) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 as nitrogen source. Can J Bot 80:571–576CrossRefGoogle Scholar
  64. Wamberg C, Christensen S, Jakobsen I (2003a) Interaction between foliar-feeding insects, mycorrhizal fungi, and rhizosphere protozoa on pea plants. Pedobiologia 47:281–287CrossRefGoogle Scholar
  65. Wamberg C, Christensen S, Jakobsen I, Muller AK, Sorensen SJ (2003b) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1349–1357CrossRefGoogle Scholar
  66. Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marc St Arnaud
    • 1
  • Annemie Elsen
    • 2
  1. 1.Jardin Botanique de MontréalInstitut de Recherche en Biologie VégétaleMontréalCanada
  2. 2.Laboratory of Tropical Crop ImprovementKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations