Developmental Regulation of the β-Globin Gene Locus

  • Lyubomira Chakalova
  • David Carter
  • Emmanuel Debrand
  • Beatriz Goyenechea
  • Alice Horton
  • Joanne Miles
  • Cameron Osborne
  • Peter Fraser
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 38)


The β-globin genes have become a classical model for studying regulation of gene expression. Wide-ranging studies have revealed multiple levels of epigenetic regulation that coordinately ensure a highly specialised, tissue- and stage-specific gene transcription pattern. Key players include cis-acting elements involved in establishing and maintaining specific chromatin conformations and histone modification patterns, elements engaged in the transcription process through long-range regulatory interactions, trans-acting general and tissue-specific factors. On a larger scale, molecular events occurring at the locus level take place in the context of a highly dynamic nucleus as part of the cellular epigenetic programme.


Globin Gene Erythroid Cell Locus Control Region Hypersensitive Site Globin Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad K, Henikoff S (2002a) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci USA 99(Suppl 4):16477–16484CrossRefPubMedGoogle Scholar
  2. Ahmad K, Henikoff S (2002b) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9(6):1191–1200Google Scholar
  3. Alami R, Bender MA, Feng YQ, Fiering SN, Hug BA, Ley TJ, Groudine M, Bouhassira EE (2000) Deletions within the mouse beta-globin locus control region preferentially reduce beta(min) globin gene expression. Genomics 63(3):417–424CrossRefPubMedGoogle Scholar
  4. Antoniou M, deBoer E, Habets G, Grosveld F (1988) The human beta-globin gene contains multiple regulatory regions: identification of one promoter and two downstream enhancers. EMBO J 7(2):377–384PubMedGoogle Scholar
  5. Ashe HL, Monks J, Wijgerde M, Fraser P, Proudfoot NJ (1997) Intergenic transcription and transinduction of the human beta-globin locus. Genes Dev 11(19):2494–2509PubMedGoogle Scholar
  6. Behringer RR, Hammer RE, Brinster RL, Palmiter RD, Townes TM (1987) Two 3′ sequences direct adult erythroid-specific expression of human beta-globin genes in transgenic mice. Proc Natl Acad Sci USA 84(20):7056–7060PubMedGoogle Scholar
  7. Bell AC, Felsenfeld G (1999) Stopped at the border: boundaries and insulators. Curr Opin Genet Dev 9(2):191–198CrossRefPubMedGoogle Scholar
  8. Bender MA, Reik A, Close J, Telling A, Epner E, Fiering S, Hardison R, Groudine M (1998) Description and targeted deletion of 5′ hypersensitive site 5 and 6 of the mouse beta-globin locus control region. Blood 92(11):4394–4403PubMedGoogle Scholar
  9. Bender MA, Roach JN, Halow J, Close J, Alami R, Bouhassira EE, Groudine M, Fiering SN (2001) Targeted deletion of 5′HS1 and 5′HS4 of the beta-globin locus control region reveals additive activity of the DNaseI hypersensitive sites. Blood 98(7):2022–2027CrossRefPubMedGoogle Scholar
  10. Blom van Assendelft G, Hanscombe O, Grosveld F, Greaves DR (1989) The beta-globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner. Cell 56(6):969–977CrossRefPubMedGoogle Scholar
  11. Brotherton TW, Chui DH, Gauldie J, Patterson M (1979) Hemoglobin ontogeny during normal mouse fetal development. Proc Natl Acad Sci USA 76(6):2853–2857PubMedGoogle Scholar
  12. Brown KE, Amoils S, Horn JM, Buckle VJ, Higgs DR, Merkenschlager M, Fisher AG (2001) Expression of alpha-and beta-globin genes occurs within different nuclear domains in haemopoietic cells. Nat Cell Biol 3(6):602–606CrossRefPubMedGoogle Scholar
  13. Bulger M, van Doorninck JH, Saitoh N, Telling A, Farrell C, Bender MA, Felsenfeld G, Axel R, Groudine M, von Doorninck JH (1999) Conservation of sequence and structure flanking the mouse and human beta-globin loci: the beta-globin genes are embedded within an array of odorant receptor genes. Proc Natl Acad Sci USA 96(9):5129–5134CrossRefPubMedGoogle Scholar
  14. Bulger M, Bender MA, van Doorninck JH, Wertman B, Farrell CM, Felsenfeld G, Groudine M, Hardison R (2000) Comparative structural and functional analysis of the olfactory receptor genes flanking the human and mouse beta-globin gene clusters. Proc Natl Acad Sci USA 97(26):14560–14565CrossRefPubMedGoogle Scholar
  15. Bulger M, Schubeler D, Bender MA, Hamilton J, Farrell CM, Hardison RC, Groudine M (2003) A complex chromatin landscape revealed by patterns of nuclease sensitivity and histone modification within the mouse beta-globin locus. Mol Cell Biol 23(15):5234–5244CrossRefPubMedGoogle Scholar
  16. Bungert J, Dave U, Lim KC, Lieuw KH, Shavit JA, Liu Q, Engel JD (1995) Synergistic regulation of human beta-globin gene switching by locus control region elements HS3 and HS4. Genes Dev 9(24):3083–3096PubMedGoogle Scholar
  17. Bungert J, Tanimoto K, Patel S, Liu Q, Fear M, Engel JD (1999) Hypersensitive site 2 specifies a unique function within the human beta-globin locus control region to stimulate globin gene transcription. Mol Cell Biol 19(4):3062–3072PubMedGoogle Scholar
  18. Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P (2002) Long-range chromatin regulatory interactions in vivo. Nat Genet 32(4):623–626CrossRefPubMedGoogle Scholar
  19. Chada K, Magram J, Costantini F (1986) An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature 319(6055):685–689PubMedGoogle Scholar
  20. Collins FS, Weissman SM (1984) The molecular genetics of human hemoglobin. Prog Nucleic Acid Res Mol Biol 31:315–462PubMedGoogle Scholar
  21. Collis P, Antoniou M, Grosveld F (1990) Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. EMBO J 9(1):233–240PubMedGoogle Scholar
  22. Curtin P, Pirastu M, Kan YW, Gobert-Jones JA, Stephens AD, Lehmann H (1985) A distant gene deletion affects beta-globin gene function in an atypical gamma delta beta-thalassemia. J Clin Invest 76(4):1554–1558PubMedGoogle Scholar
  23. Curtin PT, Kan YW (1988) The inactive beta globin gene on a gamma delta beta thalassemia chromosome has a normal structure and functions normally in vitro. Blood 71(3):766–770PubMedGoogle Scholar
  24. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311CrossRefPubMedGoogle Scholar
  25. Dillon N, Trimborn T, Strouboulis J, Fraser P, Grosveld F (1997) The effect of distance on long-range chromatin interactions. Mol Cell 1(1):131–139CrossRefPubMedGoogle Scholar
  26. Dimitrova DS, Gilbert DM (1999) The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4(6):983–993CrossRefPubMedGoogle Scholar
  27. Driscoll MC, Dobkin CS, Alter BP (1989) Gamma delta beta-thalassemia due to a de novo mutation deleting the 5′ beta-globin gene activation-region hypersensitive sites. Proc Natl Acad Sci USA 86(19):7470–7474PubMedGoogle Scholar
  28. Ellis J, Tan-Un KC, Harper A, Michalovich D, Yannoutsos N, Philipsen S, Grosveld F (1996) A dominant chromatin-opening activity in 5′ hypersensitive site 3 of the human beta-globin locus control region. EMBO J 15(3):562–568PubMedGoogle Scholar
  29. Enver T, Raich N, Ebens AJ, Papayannopoulou T, Costantini F, Stamatoyannopoulos G (1990) Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature 344(6264):309–313CrossRefPubMedGoogle Scholar
  30. Epner E, Reik A, Cimbora D, Telling A, Bender MA, Fiering S, Enver T, Martin DI, Kennedy M, Keller G, Groudine M (1998) The beta-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse beta-globin locus. Mol Cell 2(4):447–455CrossRefPubMedGoogle Scholar
  31. Farrell CM, West AG, Felsenfeld G (2002) Conserved CTCF insulator elements flank the mouse and human beta-globin loci. Mol Cell Biol 22(11):3820–3831CrossRefPubMedGoogle Scholar
  32. Farrell CM, Grinberg A, Huang SP, Chen D, Pichel JG, Westphal H, Felsenfeld G (2000) A large upstream region is not necessary for gene expression or hypersensitive site formation at the mouse beta-globin locus. Proc Natl Acad Sci USA 97(26):14554–14559CrossRefPubMedGoogle Scholar
  33. Felsenfeld G (1993) Chromatin structure and the expression of globin-encoding genes. Gene 135(1–2):119–124CrossRefPubMedGoogle Scholar
  34. Festenstein R, Tolaini M, Corbella P, Mamalaki C, Parrington J, Fox M, Miliou A, Jones M, Kioussis D (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271(5252):1123–1125PubMedGoogle Scholar
  35. Fiering S, Epner E, Robinson K, Zhuang Y, Telling A, Hu M, Martin DI, Enver T, Ley TJ, Groudine M (1995) Targeted deletion of 5′HS2 of the murine beta-globin LCR reveals that it is not essential for proper regulation of the beta-globin locus. Genes Dev 9(18):2203–2213PubMedGoogle Scholar
  36. Forrester WC, Thompson C, Elder JT, Groudine M (1986) A developmentally stable chromatin structure in the human beta-globin gene cluster. Proc Natl Acad Sci USA 83(5):1359–1363PubMedGoogle Scholar
  37. Forrester WC, Takegawa S, Papayannopoulou T, Stamatoyannopoulos G, Groudine M (1987) Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res 15(24):10159–10177PubMedGoogle Scholar
  38. Forrester WC, Epner E, Driscoll MC, Enver T, Brice M, Papayannopoulou T, Groudine M (1990) A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev 4(10):1637–1649PubMedGoogle Scholar
  39. Forsberg EC, Downs KM, Christensen HM, Im H, Nuzzi PA, Bresnick EH (2000) Developmentally dynamic histone acetylation pattern of a tissue-specific chromatin domain. Proc Natl Acad Sci USA 97(26):14494–14499CrossRefPubMedGoogle Scholar
  40. Fraser P, Grosveld F (1998) Locus control regions, chromatin activation and transcription. Curr Opin Cell Biol 10(3):361–365CrossRefPubMedGoogle Scholar
  41. Fraser P, Hurst J, Collis P, Grosveld F (1990) DNaseI hypersensitive sites 1, 2 and 3 of the human beta-globin dominant control region direct position-independent expression. Nucleic Acids Res 18(12):3503–3508PubMedGoogle Scholar
  42. Fraser P, Pruzina S, Antoniou M, Grosveld F (1993) Each hypersensitive site of the human beta-globin locus control region confers a different developmental pattern of expression on the globin genes. Genes Dev 7(1):106–113PubMedGoogle Scholar
  43. Fraser P, Gribnau J, Trimborn T (1998) Mechanisms of developmental regulation in globin loci. Curr Opin Hematol 5(2):139–144PubMedGoogle Scholar
  44. Friend C, Patuleia MC, de Harven E (1966) Erythrocytic maturation in vitro of murine (Friend) virus-induced leukemic cells. Natl Cancer Inst Monogr 22:505–522PubMedGoogle Scholar
  45. Furukawa T, Navas PA, Josephson BM, Peterson KR, Papayannopoulou T, Stamatoy-annopoulos G (1995) Coexpression of epsilon, G gamma and A gamma globin mRNA in embryonic red blood cells from a single copy beta-YAC transgenic mouse. Blood Cells Mol Dis 21(2):168–178CrossRefPubMedGoogle Scholar
  46. Goodwin AJ, McInerney JM, Glander MA, Pomerantz O, Lowrey CH (2001) In vivo formation of a human beta-globin locus control region core element requires binding sites for multiple factors including GATA-1, NF-E2, erythroid Kruppel-like factor, and Sp1. J Biol Chem 276(29):26883–26892CrossRefPubMedGoogle Scholar
  47. Gribnau J, Diderich K, Pruzina S, Calzolari R, Fraser P (2000) Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. Mol Cell 5(2):377–386CrossRefPubMedGoogle Scholar
  48. Grosveld F, van Assendelft GB, Greaves DR, Kollias G (1987) Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51(6):975–985CrossRefPubMedGoogle Scholar
  49. Hanscombe O, Whyatt D, Fraser P, Yannoutsos N, Greaves D, Dillon N, Grosveld F (1991) Importance of globin gene order for correct developmental expression. Genes Dev 5(8):1387–1394PubMedGoogle Scholar
  50. Harteveld CL, Osborne CS, Peters M, van der Werf S, Plug R, Fraser P, Giordano PC (2003) Novel 112 kb (epsilon G gamma A gamma) delta beta-thalassaemia deletion in a Dutch family. Br J Haematol 122(5):855–858CrossRefPubMedGoogle Scholar
  51. Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J 13(8):1823–1830PubMedGoogle Scholar
  52. Hug BA, Wesselschmidt RL, Fiering S, Bender MA, Epner E, Groudine M, Ley TJ (1996) Analysis of mice containing a targeted deletion of beta-globin locus control region 5′ hypersensitive site 3. Mol Cell Biol 16(6):2906–2912PubMedGoogle Scholar
  53. Hunt JA (1974) Rate of synthesis and half-life of globin messenger ribonucleic acid. Rate of synthesis of globin messenger ribonucleic acid calculated from data of cell haemoglobin content. Biochem J 138(3):499–510PubMedGoogle Scholar
  54. Imaizumi T, Diggelmann H, Scherrer K (1973) Demonstration of globin messenger sequences in giant nuclear precursors of messenger RNA of avian erythroblasts. Proc Natl Acad Sci USA 70(4):1122–1126PubMedGoogle Scholar
  55. Jackson JD, Petrykowska H, Philipsen S, Miller W, Hardison R (1996) Role of DNA sequences outside the cores of DNase hypersensitive sites (HSs) in functions of the beta-globin locus control region. Domain opening and synergism between HS2 and HS3. J Biol Chem 271(20):11871–11878CrossRefPubMedGoogle Scholar
  56. Kioussis D, Festenstein R (1997) Locus control regions: overcoming heterochromatin-induced gene inactivation in mammals. Curr Opin Genet Dev 7(5):614–619CrossRefPubMedGoogle Scholar
  57. Kioussis D, Vanin E, deLange T, Flavell RA, Grosveld F (1983) Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature 306(5944):662–666CrossRefPubMedGoogle Scholar
  58. Kmita M, Duboule D (2003) Organizing axes in time and space; 25 years of colinear tinkering. Science 301(5631):331–333CrossRefPubMedGoogle Scholar
  59. Kollias G, Wrighton N, Hurst J, Grosveld F (1986) Regulated expression of human A gamma-, beta-, and hybrid gamma beta-globin genes in transgenic mice: manipulation of the developmental expression patterns. Cell 46(1):89–94CrossRefPubMedGoogle Scholar
  60. Kollias G, Hurst J, deBoer E, Grosveld F (1987) The human beta-globin gene contains a downstream developmental specific enhancer. Nucleic Acids Res 15(14):5739–5747PubMedGoogle Scholar
  61. Kong S, Bohl D, Li C, Tuan D (1997) Transcription of the HS2 enhancer toward a cis-linked gene is independent of the orientation, position, and distance of the enhancer relative to the gene. Mol Cell Biol 17(7):3955–3965PubMedGoogle Scholar
  62. Kulozik AE, Yarwood N, Jones RW (1988) The Corfu delta beta zero thalassemia: a small deletion acts at a distance to selectively abolish beta globin gene expression. Blood 71(2):457–462PubMedGoogle Scholar
  63. Leach KM, Nightingale K, Igarashi K, Levings PP, Engel JD, Becker PB, Bungert J (2001) Reconstitution of human beta-globin locus control region hypersensitive sites in the absence of chromatin assembly. Mol Cell Biol 21(8):2629–2640CrossRefPubMedGoogle Scholar
  64. Litt MD, Simpson M, Gaszner M, Allis CD, Felsenfeld G (2001a) Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293(5539):2453–2455CrossRefPubMedGoogle Scholar
  65. Litt MD, Simpson M, Recillas-Targa F, Prioleau MN, Felsenfeld G (2001b) Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J 20(9):2224–2235CrossRefPubMedGoogle Scholar
  66. Long Q, Bengra C, Li C, Kutlar F, Tuan D (1998) A long terminal repeat of the human endogenous retrovirus ERV-9 is located in the 5′ boundary area of the human beta-globin locus control region. Genomics 54(3):542–555CrossRefPubMedGoogle Scholar
  67. Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002a) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157(4):579–589CrossRefPubMedGoogle Scholar
  68. Mahy NL, Perry PE, Bickmore WA (2002b) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159(5):753–763CrossRefPubMedGoogle Scholar
  69. Marks PA, Rifkind RA (1978) Erythroleukemic differentiation. Annu Rev Biochem 47:419–448CrossRefPubMedGoogle Scholar
  70. McKittrick E, Gafken PR, Ahmad K, Henikoff S (2004) Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA 101(6):1525–1530CrossRefPubMedGoogle Scholar
  71. Milot E, Strouboulis J, Trimborn T, Wijgerde M, de Boer E, Langeveld A, Tan-Un K, Vergeer W, Yannoutsos N, Grosveld F, Fraser P (1996) Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell 87(1):105–114CrossRefPubMedGoogle Scholar
  72. Moon AM, Ley TJ (1991) Functional properties of the beta-globin locus control region in K562 erythroleukemia cells. Blood 77(10):2272–2284PubMedGoogle Scholar
  73. Mutskov VJ, Farrell CM, Wade PA, Wolffe AP, Felsenfeld G (2002) The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation. Genes Dev 16(12):1540–1554CrossRefPubMedGoogle Scholar
  74. Navas PA, Peterson KR, Li Q, Skarpidi E, Rohde A, Shaw SE, Clegg CH, Asano H, Stamatoyannopoulos G (1998) Developmental specificity of the interaction between the locus control region and embryonic or fetal globin genes in transgenic mice with an HS3 core deletion. Mol Cell Biol 18(7):4188–4196PubMedGoogle Scholar
  75. Navas PA, Peterson KR, Li Q, McArthur M, Stamatoyannopoulos G (2001) The 5′HS4 core element of the human beta-globin locus control region is required for high-level globin gene expression in definitive but not in primitive erythropoiesis. J Mol Biol 312(1):17–26CrossRefPubMedGoogle Scholar
  76. Navas PA, Swank RA, Yu M, Peterson KR, Stamatoyannopoulos G (2003) Mutation of a transcriptional motif of a distant regulatory element reduces the expression of embryonic and fetal globin genes. Hum Mol Genet 12(22):2941–2948CrossRefPubMedGoogle Scholar
  77. Orphanides G, Reinberg D (2000) RNA polymerase II elongation through chromatin. Nature 407(6803):471–475CrossRefPubMedGoogle Scholar
  78. Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35(2):190–194CrossRefPubMedGoogle Scholar
  79. Peterson KR, Clegg CH, Huxley C, Josephson BM, Haugen HS, Furukawa T, Stamatoyannopoulos G (1993) Transgenic mice containing a 248-kb yeast artificial chromosome carrying the human beta-globin locus display proper developmental control of human globin genes. Proc Natl Acad Sci USA 90(16):7593–7597PubMedGoogle Scholar
  80. Peterson KR, Clegg CH, Navas PA, Norton EJ, Kimbrough TG, Stamatoyannopoulos G (1996) Effect of deletion of 5′HS3 or 5′HS2 of the human beta-globin locus control region on the developmental regulation of globin gene expression in beta-globin locus yeast artificial chromosome transgenic mice. Proc Natl Acad Sci USA 93(13):6605–6609CrossRefPubMedGoogle Scholar
  81. Philipsen S, Talbot D, Fraser P, Grosveld F (1990) The beta-globin dominant control region: hypersensitive site 2. EMBO J 9(7):2159–2167PubMedGoogle Scholar
  82. Pikaart MJ, Recillas-Targa F, Felsenfeld G (1998) Loss of transcriptional activity of a trans-gene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev 12(18):2852–2862PubMedGoogle Scholar
  83. Plant KE, Routledge SJ, Proudfoot NJ (2001) Intergenic transcription in the human beta-globin gene cluster. Mol Cell Biol 21(19):6507–6514CrossRefPubMedGoogle Scholar
  84. Pope SH, Fibach E, Sun J, Chin K, Rodgers GP (2000) Two-phase liquid culture system models normal human adult erythropoiesis at the molecular level. Eur J Haematol 64(5):292–303CrossRefPubMedGoogle Scholar
  85. Prioleau MN, Nony P, Simpson M, Felsenfeld G (1999) An insulator element and condensed chromatin region separate the chicken beta-globin locus from an independently regulated erythroid-specific folate receptor gene. EMBO J 18(14):4035–4048CrossRefPubMedGoogle Scholar
  86. Pruzina S, Hanscombe O, Whyatt D, Grosveld F, Philipsen S (1991) Hypersensitive site 4 of the human beta globin locus control region. Nucleic Acids Res 19(7):1413–1419PubMedGoogle Scholar
  87. Ragoczy T, Telling A, Sawado T, Groudine M, Kosak ST (2003) A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res 11(5):513–525CrossRefPubMedGoogle Scholar
  88. Recillas-Targa F, Pikaart MJ, Burgess-Beusse B, Bell AC, Litt MD, West AG, Gaszner M, Felsenfeld G (2002) Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc Natl Acad Sci USA 99(10):6883–6888CrossRefPubMedGoogle Scholar
  89. Reik A, Telling A, Zitnik G, Cimbora D, Epner E, Groudine M (1998) The locus control region is necessary for gene expression in the human beta-globin locus but not the maintenance of an open chromatin structure in erythroid cells. Mol Cell Biol 18(10):5992–6000PubMedGoogle Scholar
  90. Routledge SJ, Proudfoot NJ (2002) Definition of transcriptional promoters in the human beta globin locus control region. J Mol Biol 323(4):601–611CrossRefPubMedGoogle Scholar
  91. Ryan TM, Behringer RR, Townes TM, Palmiter RD, Brinster RL (1989) High-level erythroid expression of human alpha-globin genes in transgenic mice. Proc Natl Acad Sci USA 86(1):37–41PubMedGoogle Scholar
  92. Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R (2003) DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422(6934):909–913CrossRefPubMedGoogle Scholar
  93. Schubeler, Francastel C, Cimbora DM, Reik A, Martin DI, Groudine M et al (2000) Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev 14(8):940–950PubMedGoogle Scholar
  94. Smith RD, Yu J, Seale RL (1984) Chromatin structure of the beta-globin gene family in murine erythroleukemia cells. Biochemistry 23(4):785–790CrossRefPubMedGoogle Scholar
  95. Stamatoyannopoulos G, Grosveld F (2001) Hemoglobin switching. In: Stamatoyannopoulos G, Majerus PW, Perlmutter RM, Varmus H (eds) The molecular basis of blood diseases. Saunders, Philadelphia, pp 135–182Google Scholar
  96. Strauss EC, Orkin SH (1992) In vivo protein-DNA interactions at hypersensitive site 3 of the human beta-globin locus control region. Proc Natl Acad Sci USA 89(13):5809–5813PubMedGoogle Scholar
  97. Strouboulis J, Dillon N, Grosveld F (1992) Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. Genes Dev 6(10):1857–1864PubMedGoogle Scholar
  98. Studitsky VM, Walter W, Kireeva M, Kashlev M, Felsenfeld G (2004) Chromatin remodeling by RNA polymerases. Trends Biochem Sci 29(3):127–135CrossRefPubMedGoogle Scholar
  99. Talbot D, Philipsen S, Fraser P, Grosveld F (1990) Detailed analysis of the site 3 region of the human beta-globin dominant control region. EMBO J 9(7):2169–2177PubMedGoogle Scholar
  100. Tanimoto K, Liu Q, Bungert J, Engel JD (1999) Effects of altered gene order or orientation of the locus control region on human beta-globin gene expression in mice. Nature 398(6725):344–348CrossRefPubMedGoogle Scholar
  101. Thomson I, Gilchrist S, Bickmore WA, Chubb JR (2004) The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr Biol 14(2):166–172CrossRefPubMedGoogle Scholar
  102. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10(6):1453–1465CrossRefPubMedGoogle Scholar
  103. Townes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD (1985) Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO J 4(7):1715–1723PubMedGoogle Scholar
  104. Trimborn T, Gribnau J, Grosveld F, Fraser P (1999) Mechanisms of developmental control of transcription in the murine alpha-and beta-globin loci. Genes Dev 13(1):112–124PubMedGoogle Scholar
  105. Tuan D, Solomon W, Li Q, London IM (1985) The ‘beta-like-globin’ gene domain in human erythroid cells. Proc Natl Acad Sci USA 82(19):6384–6388PubMedGoogle Scholar
  106. Tuan D, Solomon WB, London IM, Lee DP (1989) An erythroid-specific, developmental-stage-independent enhancer far upstream of the human ‘beta-like globin’ genes. Proc Natl Acad Sci USA 86(8):2554–2558PubMedGoogle Scholar
  107. Tuan D, Kong S, Hu K (1992) Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc Natl Acad Sci USA 89(23):11219–11223PubMedGoogle Scholar
  108. Van der Ploeg LH, Konings A, Oort M, Roos D, Bernini L, Flavell RA (1980) Gamma-beta-thalassaemia studies showing that deletion of the gamma-and delta-genes influences beta-globin gene expression in man. Nature 283(5748):637–642CrossRefPubMedGoogle Scholar
  109. Wijgerde M, Grosveld F, Fraser P (1995) Transcription complex stability and chromatin dynamics in vivo. Nature 377(6546):209–213CrossRefPubMedGoogle Scholar
  110. Wojda U, Noel P, Miller JL (2002) Fetal and adult hemoglobin production during adult erythropoiesis: coordinate expression correlates with cell proliferation. Blood 99(8):3005–3013PubMedGoogle Scholar
  111. Wright S, Rosenthal A, Flavell R, Grosveld F (1984) DNA sequences required for regulated expression of beta-globin genes in murine erythroleukemia cells. Cell 38(1):265–273CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lyubomira Chakalova
    • 1
  • David Carter
    • 1
  • Emmanuel Debrand
    • 1
  • Beatriz Goyenechea
    • 1
  • Alice Horton
    • 1
  • Joanne Miles
    • 1
  • Cameron Osborne
    • 1
  • Peter Fraser
    • 1
  1. 1.Laboratory of Chromatin and Gene ExpressionThe Babraham InstituteCambridgeUK

Personalised recommendations