Epigenetics and Chromatin pp 1-30

Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 38)

Chromatin Remodeling Factors and DNA Replication

  • Patrick Varga-Weisz

Abstract

Chromatin structures have to be precisely duplicated during DNA replication to maintain tissue-specific gene expression patterns and specialized domains, such as the centromeres. Chromatin remodeling factors are key components involved in this process and include histone chaperones, histone modifying enzymes and ATP-dependent chromatin remodeling complexes. Several of these factors interact directly with components of the replication machinery. Histone variants are also important to mark specific chromatin domains. Because chromatin remodeling factors render chromatin dynamic, they may also be involved in facilitating the DNA replication process through condensed chromatin domains.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad K, Henikoff S (2001) Centromeres are specialized replication domains in heterochromatin. J Cell Biol 153:101–110CrossRefPubMedGoogle Scholar
  2. Ahmad K, Henikoff S (2002a) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200Google Scholar
  3. Ahmad K, Henikoff S (2002b) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci USA 99(Suppl 4):16477–16484CrossRefPubMedGoogle Scholar
  4. Ahmed S, Saini S, Arora S, Singh J (2001) Chromodomain protein Swi6-mediated role of DNA polymerase alpha in establishment of silencing in fission yeast. J Biol Chem 276:47814–47821CrossRefPubMedGoogle Scholar
  5. Akey CW, Luger K (2003) Histone chaperones and nucleosome assembly. Curr Opin Struct Biol 13:6–14CrossRefPubMedGoogle Scholar
  6. Akhtar A (2003) Dosage compensation: an intertwined world of RNA and chromatin remodelling. Curr Opin Genet Dev 13:161–169CrossRefPubMedGoogle Scholar
  7. Alexiadis V, Varga-Weisz PD, Becker PB, Gruss C (1998) In vitro chromatin remodelling by chromatin accessibility complex (CHRAC) at the SV40 origin of DNA replication. EMBO J 17:3428–3438CrossRefPubMedGoogle Scholar
  8. Almouzni G, Méchali M (1988) Assembly of spaced chromatin. Involvement of ATP and DNA topoisomerase activity. EMBO J 7:4355–4365PubMedGoogle Scholar
  9. Annunziato AT, Hansen JC (2000) Role of histone acetylation in the assembly and modulation of chromatin structures. Gene Expr 9:37–61PubMedGoogle Scholar
  10. Bailis JM, Forsburg SL (2003) It’s all in the timing: linking S phase to chromatin structure and chromosome dynamics. Cell Cycle 2:303–306PubMedGoogle Scholar
  11. Bailis JM, Bernard P, Antonelli R, Allshire RC, Forsburg SL (2003) Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres. Nat Cell Biol 5:1111–1116CrossRefPubMedGoogle Scholar
  12. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124CrossRefPubMedGoogle Scholar
  13. Becker P, Hörz W (2002) ATP-dependent nucleosome remodeling. Annual Reviews, Palo AltoGoogle Scholar
  14. Becker PB, Wu C (1992) Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol Cell Biol 12:2241–2249PubMedGoogle Scholar
  15. Belyaev ND, Keohane AM, Turner BM (1996) Histone H4 acetylation and replication timing in Chinese hamster chromosomes. Exp Cell Res 225:277–285CrossRefPubMedGoogle Scholar
  16. Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542CrossRefPubMedGoogle Scholar
  17. Bjerling P, Silverstein RA, Thon G, Caudy A, Grewal S, Ekwall K (2002) Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Mol Cell Biol 22:2170–2181CrossRefPubMedGoogle Scholar
  18. Bochar DA, Savard J, Wang W, Lafleur DW, Moore P, Cote J, Shiekhattar R (2000) A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc Natl Acad Sci USA 97:1038–1043CrossRefPubMedGoogle Scholar
  19. Bozhenok L, Wade PA, Varga-Weisz P (2002) WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J 21:2231–2241CrossRefPubMedGoogle Scholar
  20. Braunstein M, Sobel RE, Allis CD, Turner BM, Broach JR (1996) Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol 16:4349–4356PubMedGoogle Scholar
  21. Brockdorff N (2002) X-chromosome inactivation: closing in on proteins that bind Xist RNA. Trends Genet 18:352–358CrossRefPubMedGoogle Scholar
  22. Burke TW, Cook JG, Asano M, Nevins JR (2001) Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J Biol Chem 276:15397–15408CrossRefPubMedGoogle Scholar
  23. Chen H, Li B, Workman JL (1994) A histone-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor-induced nucleosome disassembly. EMBO J 13:380–390PubMedGoogle Scholar
  24. Collins N, Poot RA, Kukimoto I, Garcia-Jimenez C, Dellaire G, Varga-Weisz PD (2002) An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 32:627–632CrossRefPubMedGoogle Scholar
  25. Cosgrove AJ, Nieduszynski CA, Donaldson AD (2002) Ku complex controls the replication time of DNA in telomere regions. Genes Dev 16:2485–2490CrossRefPubMedGoogle Scholar
  26. Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601CrossRefPubMedGoogle Scholar
  27. Csink AK, Henikoff S (1998) Something from nothing: the evolution and utility of satellite repeats. Trends Genet 14:200–204CrossRefPubMedGoogle Scholar
  28. Cusick ME, Lee KS, DePamphilis ML, Wassarman PM (1983) Structure of chromatin at deoxyribonucleic acid replication forks: nuclease hypersensitivity results from both prenucleosomal deoxyribonucleic acid and an immature chromatin structure. Biochemistry 22:3873–3884CrossRefPubMedGoogle Scholar
  29. Demeret C, Bocquet S, Lemaitre JM, Francon P, Mechali M (2002) Expression of ISWI and its binding to chromatin during the cell cycle and early development. J Struct Biol 140:57–66CrossRefPubMedGoogle Scholar
  30. Dennis K, Fan T, Geiman T, Yan Q, Muegge K (2001) Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev 15:2940–2944CrossRefPubMedGoogle Scholar
  31. De Rubertis F, Kadosh D, Henchoz S, Pauli D, Reuter G, Struhl K, Spierer P (1996) The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384:589–591CrossRefPubMedGoogle Scholar
  32. Deuring R, Fanti L, Armstrong JA, Sarte M, Papoulas O, Prestel M, Daubresse G, Verardo M, Moseley SL, Berloco M, Tsukiyama T, Wu C, Pimpinelli S, Tamkun JW (2000) The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol Cell 5:355–365CrossRefPubMedGoogle Scholar
  33. Dimitrov S, Almouzni A, Dasso M, Wolffe AP (1993) Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and linker histone type. Dev Biol 160:214–227CrossRefPubMedGoogle Scholar
  34. Earnshaw W, Bordwell B, Marino C, Rothfield N (1986) Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies. J Clin Invest 77:426–430PubMedGoogle Scholar
  35. Eberharter A, Ferrari S, Langst G, Straub T, Imhof A, Varga-Weisz P, Wilm M, Becker PB (2001) Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J 20:3781–3788CrossRefPubMedGoogle Scholar
  36. Ehrenhofer-Murray AE, Kamakaka RT, Rine J (1999) A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae. Genetics 153:1171–1182PubMedGoogle Scholar
  37. Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91:1021–1032CrossRefPubMedGoogle Scholar
  38. Enomoto S, Berman J (1998) Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev 12:219–232PubMedGoogle Scholar
  39. Enomoto S, McCune-Zierath PD, Gerami-Nejad M, Sanders MA, Berman J (1997) RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev 11:358–370PubMedGoogle Scholar
  40. Fazzio TG, Tsukiyama T (2003) Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism. Mol Cell 12:1333–1340CrossRefPubMedGoogle Scholar
  41. Flanagan JF, Peterson CL (1999) A role for the yeast SWI/SNF complex in DNA replication. Nucleic Acids Res 27:2022–2028CrossRefPubMedGoogle Scholar
  42. Fyodorov DV, Kadonaga JT (2002) Dynamics of ATP-dependent chromatin assembly by ACF. Nature 418:897–900CrossRefPubMedGoogle Scholar
  43. Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT (2004) Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than the disruption of chromatin in vivo. Genes Dev 18(2):170–183CrossRefPubMedGoogle Scholar
  44. Gaillard PL, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G (1996) Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor-1. Cell 86:887–896CrossRefPubMedGoogle Scholar
  45. Gasser R, Koller T, Sogo JM (1996) The stability of nucleosomes at the replication fork. J Mol Biol 258:224–239CrossRefPubMedGoogle Scholar
  46. Gasser SM (1995) Chromosome structure. Coiling up chromosomes. Curr Biol 5:357–360CrossRefPubMedGoogle Scholar
  47. Glikin GC, Ruberti I, Worcel A (1984) Chromatin assembly in Xenopus oocytes: in vitro studies. Cell 37:33–41CrossRefPubMedGoogle Scholar
  48. Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T (2000) The Isw2 chromatin remodelling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103:423–433CrossRefPubMedGoogle Scholar
  49. Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman JL (1997) Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11:1640–1650PubMedGoogle Scholar
  50. Grewal SI, Elgin SC (2002) Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev 12:178–187CrossRefPubMedGoogle Scholar
  51. Grewal SI, Bonaduce MJ, Klar AJ (1998) Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 150:563–576PubMedGoogle Scholar
  52. Grienenberger A, Miotto B, Sagnier T, Cavalli G, Schramke V, Geli V, Mariol MC, Berenger H, Graba Y, Pradel J (2002) The MYST domain acetyltransferase Chameau functions in epigenetic mechanisms of transcriptional repression. Curr Biol 12:762–766CrossRefPubMedGoogle Scholar
  53. Gruss C, Sogo JM (1992) Chromatin replication. Bioessays 14:1–8CrossRefPubMedGoogle Scholar
  54. Gruss C, Wu J, Koller T, Sogo JM (1993) Disruption of nucleosomes at the replication fork. EMBO J 12:4533–4545PubMedGoogle Scholar
  55. Haaf T (1995) The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes. Pharmacol Ther 65:19–46CrossRefPubMedGoogle Scholar
  56. Hakimi MA, Bochar DA, Schmiesing JA, Dong Y, Barak OG, Speicher DW, Yokomori K, Shiekhattar R (2002) A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418:994–998CrossRefPubMedGoogle Scholar
  57. Hasan S, Hassa PO, Imhof R, Hottiger MO (2001) Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature 410:387–391CrossRefPubMedGoogle Scholar
  58. Haushalter KA, Kadonaga JT (2003) Chromatin assembly by DNA-translocating motors. Nat Rev Mol Cell Biol 4:613–620CrossRefPubMedGoogle Scholar
  59. Havas K, Flaus A, Phelan M, Kingston R, Wade PA, Lilley DM, Owen-Hughes T (2000) Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 103:1133–1142CrossRefPubMedGoogle Scholar
  60. Henderson DS, Banga SS, Grigliatti TA, Boyd JB (1994) Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J 13:1450–1459PubMedGoogle Scholar
  61. Henikoff S, Ahmad K, Platero JS, van Steensel B (2000) Heterochromatic deposition of centromeric histone H3-like proteins. Proc Natl Acad Sci USA 97:716–721CrossRefPubMedGoogle Scholar
  62. Hennig W (1999) Heterochromatin. Chromosoma 108:1–9CrossRefPubMedGoogle Scholar
  63. Hochheimer A, Zhou S, Zheng S, Holmes MC, Tjian R (2002) TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila. Nature 420:439–445CrossRefPubMedGoogle Scholar
  64. Hoek M, Stillman B (2003) Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc Natl Acad Sci USA 100:12183–12188CrossRefPubMedGoogle Scholar
  65. Iida T, Araki H (2004) Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 24:217–227CrossRefPubMedGoogle Scholar
  66. Iizuka M, Stillman B (1999) Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 274:23027–23034CrossRefPubMedGoogle Scholar
  67. Ishimi Y, Kojima M, Yamada M, Hanaoka F (1987) Binding mode of nucleosome-assembly protein (AP-I) and histones. Eur J Biochem 162:19–24CrossRefPubMedGoogle Scholar
  68. Ito T, Bulger M, Kobayashi R, Kadonaga JT (1996) Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Mol Cell Biol 16:3112–3124PubMedGoogle Scholar
  69. Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90:145–155CrossRefPubMedGoogle Scholar
  70. Ito T, Levenstein ME, Fyodorov DV, Kutach AK, Kobayashi R, Kadonaga JT (1999) ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev 13:1529–1539PubMedGoogle Scholar
  71. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080PubMedGoogle Scholar
  72. Jeppesen P, Turner BM (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74:281–289CrossRefPubMedGoogle Scholar
  73. Kass SU, Wolffe AP (1998) DNA methylation, nucleosomes and the inheritance of chromatin structure and function. Novartis Found Symp 214:22–35; discussion 36–50PubMedGoogle Scholar
  74. Kaufman PD, Kobayashi R, Kessler N, Stillman B (1995) The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81:1105–1114CrossRefPubMedGoogle Scholar
  75. Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11:345–357PubMedGoogle Scholar
  76. Kaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T (2001) FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104:131–142CrossRefPubMedGoogle Scholar
  77. Kent NA, Karabetsou N, Politis PK, Mellor J (2001) In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p. Genes Dev 15:619–626CrossRefPubMedGoogle Scholar
  78. Krawitz DC, Kama T, Kaufman PD (2002) Chromatin assembly factor I mutants defective for PCNA binding require Asf1/Hir proteins for silencing. Mol Cell Biol 22:614–625CrossRefPubMedGoogle Scholar
  79. Krude T (1995) Chromatin assembly factor 1 (CAF-1) colocalizes with replication foci in HeLa cell nuclei. Exp Cell Res 220:304–311CrossRefPubMedGoogle Scholar
  80. Krude T (1999) Chromatin assembly during DNA replication in somatic cells. Eur J Biochem 263:1–5CrossRefPubMedGoogle Scholar
  81. Kukimoto I, Elderkin S, Grimaldi M, Oelgeschläger T, Varga-Weisz P (2004) The histone-fold protein complex CHRAC-15/17 enhances nucleosome sliding and assembly mediated by ACF. Mol Cell 13(2):265–277CrossRefPubMedGoogle Scholar
  82. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120CrossRefPubMedGoogle Scholar
  83. Längst G, Becker P (2001) Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J Cell Sci 114:2561–2568PubMedGoogle Scholar
  84. Le S, Davis C, Konopka JB, Sternglanz R (1997) Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13:1029–1042CrossRefPubMedGoogle Scholar
  85. Leonhardt H, Page AW, Weier HU, Bestor TH (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71:865–873CrossRefPubMedGoogle Scholar
  86. LeRoy G, Orphanides G, Lane WS, Reinberg D (1998) Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282:1900–1904CrossRefPubMedGoogle Scholar
  87. LeRoy G, Loyola A, Lane WS, Reinberg D (2000) Purification and characterization of a human factor that assembles and remodels chromatin. J Biol Chem 275:14787–14790CrossRefPubMedGoogle Scholar
  88. Lorain S, Quivy JP, Monier-Gavelle F, Scamps C, Lecluse Y, Almouzni G, Lipinski M (1998) Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA. Mol Cell Biol 18:5546–5556PubMedGoogle Scholar
  89. Loyola A, LeRoy G, Wang YH, Reinberg D (2001) Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription. Genes Dev 15:2837–2851PubMedGoogle Scholar
  90. Loyola A, Huang JY, LeRoy G, Hu S, Wang YH, Donnelly RJ, Lane WS, Lee SC, Reinberg D (2003) Functional analysis of the subunits of the chromatin assembly factor RSF. Mol Cell Biol 23:6759–6768CrossRefPubMedGoogle Scholar
  91. Luger K (2003) Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 13:127–135CrossRefPubMedGoogle Scholar
  92. MacCallum DE, Losada A, Kobayashi R, Hirano T (2002) ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B. Mol Biol Cell 13:25–39CrossRefPubMedGoogle Scholar
  93. Maga G, Hubscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116:3051–3060CrossRefPubMedGoogle Scholar
  94. Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30:329–334CrossRefPubMedGoogle Scholar
  95. Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298PubMedGoogle Scholar
  96. Marheineke K, Krude T (1998) Nucleosome assembly activity and intracellular localization of human CAF-1 changes during the cell division cycle. J Biol Chem 273:15279–15286CrossRefPubMedGoogle Scholar
  97. Martini E, Roche DM, Marheineke K, Verreault A, Almouzni G (1998) Recruitment of phosphorylated chromatin assembly factor 1 to chromatin after UV irradiation of human cells. J Cell Biol 143:563–575CrossRefPubMedGoogle Scholar
  98. McNairn AJ, Gilbert DM (2003) Epigenomic replication: linking epigenetics to DNA replication. Bioessays 25:647–656CrossRefPubMedGoogle Scholar
  99. Meijsing SH, Ehrenhofer-Murray AE (2001) The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae. Genes Dev 15:3169–3182CrossRefPubMedGoogle Scholar
  100. Mello JA, Almouzni G (2001) The ins and outs of nucleosome assembly. Curr Opin Genet Dev 11:136–141CrossRefPubMedGoogle Scholar
  101. Mello JA, Sillje HH, Roche DM, Kirschner DB, Nigg EA, Almouzni G (2002) Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 3:329–334CrossRefPubMedGoogle Scholar
  102. Mellone BG, Allshire RC (2003) Stretching it: putting the CEN(P-A) in centromere. Curr Opin Genet Dev 13:191–198CrossRefPubMedGoogle Scholar
  103. Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348CrossRefPubMedGoogle Scholar
  104. Monson EK, de Bruin D, Zakian VA (1997) The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc Natl Acad Sci USA 94:13081–13086CrossRefPubMedGoogle Scholar
  105. Morillon, A, Karabetsou N, O’Sullivan J, Kent N, Proudfoot N, Mellor J (2003) Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115:425–435CrossRefPubMedGoogle Scholar
  106. Moshkin YM, Armstrong JA, Maeda RK, Tamkun JW, Verrijzer P, Kennison JA, Karch F (2002) Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev 16:2621–2626CrossRefPubMedGoogle Scholar
  107. Muchardt C, Yaniv M (2001) When the SWI/SNF complex remodels…the cell cycle. Oncogene 20:3067–3075CrossRefPubMedGoogle Scholar
  108. Muchardt C, Guilleme M, Seeler JS, Trouche D, Dejean A, Yaniv M (2002) Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha. EMBO Rep 3:975–981CrossRefPubMedGoogle Scholar
  109. Munakata T, Adachi N, Yokoyama N, Kuzuhara T, Horikoshi M (2000) A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 5:221–233CrossRefPubMedGoogle Scholar
  110. Murzina N, Verreault A, Laue E, Stillman B (1999) Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol Cell 4:529–540CrossRefPubMedGoogle Scholar
  111. Nakayama J, Allshire RC, Klar AJ, Grewal SI (2001) A role for DNA polymerase alpha in epigenetic control of transcriptional silencing in fission yeast. EMBO J 20:2857–2866CrossRefPubMedGoogle Scholar
  112. Narlikar GJ, Fan H-Y, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487CrossRefPubMedGoogle Scholar
  113. Ner SS, Travers AA (1994) HMG-D, the Drosophila melanogaster homologue of HMG 1 protein, is associated with early embryonic chromatin in the absence of histone H1. EMBO J 13:1817–1822PubMedGoogle Scholar
  114. Noma K, Allis CD, Grewal SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293:1150–1155CrossRefPubMedGoogle Scholar
  115. Nonaka N, Kitajima T, Yokobayashi S, Xiao G, Yamamoto M, Grewal SI, Watanabe Y (2002) Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol 4:89–93CrossRefPubMedGoogle Scholar
  116. O’Neill LP, Turner BM (1995) Histone H4 acetylation distinguishes coding regions of the genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J 14:3946–3957PubMedGoogle Scholar
  117. Osada S, Sutton A, Muster N, Brown CE, Yates JR III, Sternglanz R, Workman JL (2001) The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1. Genes Dev 15:3155–3168CrossRefPubMedGoogle Scholar
  118. Ouspenski II, van Hooser AA, Brinkley BR (2003) Relevance of histone acetylation and replication timing for deposition of centromeric histone CENP-A. Exp Cell Res 285:175–188CrossRefPubMedGoogle Scholar
  119. Owen-Hughes T, Workman JL (1996) Remodeling the chromatin structure of a nucleosome array by transcription factor-targeted trans-displacement of histones. EMBO J 15:4702–4712PubMedGoogle Scholar
  120. Pak DT, Pflumm M, Chesnokov I, Huang DW, Kellum R, Marr J, Romanowski P, Botchan MR (1997) Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell 91:311–323CrossRefPubMedGoogle Scholar
  121. Pal-Bhadra M, Leibovitch BA, Gandhi SG, Rao M, Bhadra U, Birchler JA, Elgin SC (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303:669–672Google Scholar
  122. Palmer DK, O’Day K, Trong HL, Charbonneau H, Margolis RL (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci USA 88:3734–3738PubMedGoogle Scholar
  123. Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337CrossRefPubMedGoogle Scholar
  124. Poot RA, Dellaire G, Hulsmann BB, Grimaldi MA, Corona DF, Becker PB, Bickmore WA, Varga-Weisz PD (2000) HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J 19:3377–3387CrossRefPubMedGoogle Scholar
  125. Prasanth SG, Prasanth KV, Stillman B (2002) Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science 297:1026–1031CrossRefPubMedGoogle Scholar
  126. Pulm W, Knippers R (1984) Chromatin structure and DNA replication. Adv Exp Med Biol 179:127–141PubMedGoogle Scholar
  127. Quivy JP, Grandi P, Almouzni G (2001) Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J 20:2015–2027CrossRefPubMedGoogle Scholar
  128. Ray-Gallet D, Quivy JP, Scamps C, Martini EM, Lipinski M, Almouzni G (2002) HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell 9:1091–1100CrossRefPubMedGoogle Scholar
  129. Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599CrossRefPubMedGoogle Scholar
  130. Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25:269–277CrossRefPubMedGoogle Scholar
  131. Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 32:393–396CrossRefPubMedGoogle Scholar
  132. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are trimethylated at K4 of histone H3. Nature 419:407–411CrossRefPubMedGoogle Scholar
  133. Schlaeger EJ, Pulm W, Knippers R (1983) Chromatin maturation depends on continued DNA-replication. FEBS Lett 156:281–286CrossRefPubMedGoogle Scholar
  134. Sharp JA, Franco AA, Osley MA, Kaufman PD (2002) Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev 16:85–100CrossRefPubMedGoogle Scholar
  135. Shelby RD, Vafa O, Sullivan KF (1997) Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol 136:501–513CrossRefPubMedGoogle Scholar
  136. Shelby RD, Monier K, Sullivan KF (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol 151:1113–1118CrossRefPubMedGoogle Scholar
  137. Shibahara K, Verreault A, Stillman B (2000) The N-terminal domains of histones H3 and H4 are not necessary for chromatin assembly factor-1-mediated nucleosome assembly onto replicated DNA in vitro. Proc Natl Acad Sci USA 97:7766–7771CrossRefPubMedGoogle Scholar
  138. Shibahara K, Stillman B (1999) Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96(4):575–585CrossRefPubMedGoogle Scholar
  139. Smith JS, Caputo E, Boeke JD (1999) A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol Cell Biol 19:3184–3197PubMedGoogle Scholar
  140. Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25CrossRefPubMedGoogle Scholar
  141. Smith S, Stillman B (1991) Stepwise assembly of chromatin during DNA replication in vitro. EMBO J 10:971–980PubMedGoogle Scholar
  142. Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD (1995) Conservation of depositionrelated acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 92:1237–1241PubMedGoogle Scholar
  143. Sogo JM, Stahl H, Koller T, Knippers R (1986) Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J Mol Biol 189:189–204CrossRefPubMedGoogle Scholar
  144. Stevenson JB, Gottschling DE (1999) Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev 13:146–151PubMedGoogle Scholar
  145. Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9:573–586PubMedGoogle Scholar
  146. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45Google Scholar
  147. Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Langst G, Grummt I (2001) NoRC — a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 20:4892–4900CrossRefPubMedGoogle Scholar
  148. Sullivan B, Karpen G (2001) Centromere identity in Drosophila is not determined in vivo by replication timing. J Cell Biol 154:683–690CrossRefPubMedGoogle Scholar
  149. Sullivan KF (2001) A solid foundation: functional specialization of centromeric chromatin. Curr Opin Genet Dev 11:182–188CrossRefPubMedGoogle Scholar
  150. Taddei A, Roche D, Sibarita JB, Turner BM, Almouzni G (1999) Duplication and maintenance of heterochromatin domains. J Cell Biol 147:1153–1166CrossRefPubMedGoogle Scholar
  151. Taddei A, Maison C, Roche D, Almouzni G (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol 3:114–120CrossRefPubMedGoogle Scholar
  152. Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone h3.1 and h3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61CrossRefPubMedGoogle Scholar
  153. Tchenio T, Casella JF, Heidmann T (2001) A truncated form of the human CAF-1 p150 subunit impairs the maintenance of transcriptional gene silencing in mammalian cells. Mol Cell Biol 21:1953–1961CrossRefPubMedGoogle Scholar
  154. Thoma F, Koller T (1977) Influence of histone H1 on chromatin structure. Cell 12:101–107CrossRefPubMedGoogle Scholar
  155. Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–921CrossRefPubMedGoogle Scholar
  156. Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402:555–560CrossRefPubMedGoogle Scholar
  157. Tyler JK, Collins KA, Prasad-Sinha J, Amiott E, Bulger M, Harte PJ, Kobayashi R, Kadonaga JT (2001) Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 21:6574–6584CrossRefPubMedGoogle Scholar
  158. Van Daal A, Elgin SC (1992) A histone variant, H2AvD, is essential in Drosophila melanogaster. Mol Biol Cell 3:593–602PubMedGoogle Scholar
  159. Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB (1997) Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598–602CrossRefPubMedGoogle Scholar
  160. Varga-Weisz PD, Becker PB (1998) Chromatin-remodeling factors: machines that regulate? Curr Opin Cell Biol 10(3):346–353CrossRefPubMedGoogle Scholar
  161. Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676CrossRefPubMedGoogle Scholar
  162. Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87:95–104CrossRefPubMedGoogle Scholar
  163. Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M (2002) Histone acetylation regulates the time of replication origin firing. Mol Cell 10:1223–1233CrossRefPubMedGoogle Scholar
  164. Volpe T, Schramke V, Hamilton GL, White SA, Teng G, Martienssen RA, Allshire RC (2003) RNA interference is required for normal centromere function in fission yeast. Chromosome Res 11:137–146CrossRefPubMedGoogle Scholar
  165. Wallrath LL (1998) Unfolding the mysteries of heterochromatin. Curr Opin Genet Dev 8:147–153CrossRefPubMedGoogle Scholar
  166. Xiao H, Sandaltzopoulos R, Wang H, Hamiche A, Ranallo R, Lee K, Fu D, Wu C (2001) Dual functions of largest nurf subunit nurf301 in nucleosome sliding and transcription factor interactions. Mol Cell 8:531–543CrossRefPubMedGoogle Scholar
  167. Yan Q, Huang J, Fan T, Zhu H, Muegge K (2003) Lsh, a modulator of CpG methylation, is crucial for normal histone methylation. EMBO J 22:5154–5162CrossRefPubMedGoogle Scholar
  168. Ye X, Franco AA, Santos H, Nelson DM, Kaufman PD, Adams PD (2003) Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell 11:341–351CrossRefPubMedGoogle Scholar
  169. Yoda K, Ando S, Morishita S, Houmura K, Hashimoto K, Takeyasu K, Okazaki T (2000) Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci USA 97:7266–7271CrossRefPubMedGoogle Scholar
  170. Zappulla DC, Sternglanz R, Leatherwood J (2002) Control of replication timing by a transcriptional silencer. Curr Biol 12:869–875CrossRefPubMedGoogle Scholar
  171. Zhang J, Xu F, Hashimshony T, Keshet I, Cedar H (2002) Establishment of transcriptional competence in early and late S phase. Nature 420:198–202CrossRefPubMedGoogle Scholar
  172. Zhang Z, Shibahara K, Stillman B (2000) PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408:221–225CrossRefPubMedGoogle Scholar
  173. Zhou Y, Santoro R, Grummt I (2002) The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J 21:4632–4640CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Patrick Varga-Weisz
    • 1
  1. 1.Marie Curie Research InstituteThe Chart, Oxted, SurreyUK

Personalised recommendations