Locked Nucleic Acid: High-Affinity Targeting of Complementary RNA for RNomics

  • S. Kauppinen
  • B. Vester
  • J. Wengel
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 173)


Locked nucleic acid (LNA) is a nucleic acid analog containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA-mimicking sugar conformation. This conformational restriction is translated into unprecedented hybridization affinity towards complementary single-stranded RNA molecules. That makes fully modified LNAs, LNA/DNA mixmers, or LNA/RNA mixmers uniquely suited for mimicking RNA structures and for RNA targeting in vitro or in vivo. The focus of this chapter is on LNA antisense, LNA-modified DNAzymes (LNAzymes), LNA-modified small interfering (si)RNA (siLNA), LNA-enhanced expression profiling by real-time RT-PCR and detection and analysis of microRNAs by LNA-modified probes.


LNA Locked nucleic acid RNA targeting LNA antisense MicroRNA targeting 


  1. Ambros V (2001) MicroRNAs: tiny regulators with great potential. Cell 107:823–826CrossRefPubMedGoogle Scholar
  2. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13:807–818CrossRefPubMedGoogle Scholar
  3. Arzumanov A, Stetsenko DA, Malakhov AD, Reichelt S, Sørensen MD, Babu BR, Wengel J, Gait MJ (2003) A structure-activity study of the inhibition of HIV-1 tat-dependent transactivation by mixmer 2′-O-methyl oligoribonucleotides containing locked nucleic acid (LNA), α-L-LNA, or 2′-thio-LNA residues. Oligonucleotides 13:435–45CrossRefPubMedGoogle Scholar
  4. Aviv H, Leder P (1972) Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci USA 69:1408–1412PubMedGoogle Scholar
  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  6. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004)An autonomous molecular computer for logical control of gene expression. Nature 429:423–429CrossRefPubMedGoogle Scholar
  7. Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8:1–7CrossRefPubMedGoogle Scholar
  8. Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, Corey DR (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 8:7967–7975Google Scholar
  9. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193CrossRefPubMedGoogle Scholar
  10. Childs JL, Disney MD, Turner DH (2002) Oligonucleotide directed misfolding of RNA inhibits Candida albicans group I intron splicing. Proc Natl Acad Sci USA 99:11091–11096CrossRefPubMedGoogle Scholar
  11. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299CrossRefPubMedGoogle Scholar
  12. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159CrossRefPubMedGoogle Scholar
  13. Crinelli R, Bianchi M, Gentilini L, Magnani M (2002) Design and characterization of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Res 30:2435–2443CrossRefPubMedGoogle Scholar
  14. De Giusto DA, King GC (2004) Strong positional preference in the interaction of LNA oligonucleotides with DNA polymerase and proofreading exonuclease activities: implications for genotyping assays. Nucleic Acids Res 32:e32PubMedGoogle Scholar
  15. Elayadi AN, Braasch DA, Corey DR (2002) Implications of high-affinity hybridization by locked nucleic acid oligomers for inhibition of human telomerase. Biochemistry 41:9973–9981CrossRefPubMedGoogle Scholar
  16. Elmén J, Zhang HY, Zuber B, Ljungberg K, Wahren B, Wahlestedt C, Liang Z (2004) Locked nucleic acid containing antisense oligonucleotides enhance inhibition of HIV-1 genome dimerization and inhibit virus replication. FEBS Lett 578:285–290PubMedGoogle Scholar
  17. Elmén J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Ørum H, Koch T, Wahlestedt C (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33:439–447PubMedGoogle Scholar
  18. Fahmy RG, Khachigian LM (2004) Locked nucleic acid modified DNA enzymes targeting early growth response-1 inhibit human vascular smooth muscle cell growth. Nucleic Acids Res 32:2281–2285CrossRefPubMedGoogle Scholar
  19. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefPubMedGoogle Scholar
  20. Fluiter K, ten Asbroek LMA, de Wissel MB, Marit B, Jakobs ME, Wissenbach M, Olsson H, Olsen O, Oerum H, Baas F (2003) In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides. Nucleic Acids Res 31:953–962CrossRefPubMedGoogle Scholar
  21. Frieden M, Christensen SM, Mikkelsen ND, Rosenbohm C, Thrue CA, Westergaard M, Hansen HF, Ørum H, Koch T (2003a) Expanding the design horizon of antisense oligonucleotides with alpha-L-LNA. Nucleic Acids Res31:6365–6372CrossRefPubMedGoogle Scholar
  22. Frieden M, Hansen HF, Koch T (2003b) Nuclease stability of LNA oligonucleotides and LNA-DNA chimeras. Nucleosides Nucleotides Nucleic Acids 22:1041–1043PubMedGoogle Scholar
  23. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111CrossRefPubMedGoogle Scholar
  24. Grünweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-Omethyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193PubMedGoogle Scholar
  25. Hansen JB, Westergaard M, Thrue CA, Giwercman B, Oerum H (2003) Antisense knockdown of PKC-alpha using LNA-oligos. Nucleosides Nucleotides Nucleic Acids 22:1607–1609PubMedGoogle Scholar
  26. Ittig D, Liu S, Renneberg D, Schuemperli D, Leumann CJ (2004) Nuclear antisense effects in cyclophilin A pre-mRNA splicing by oligonucleotides: a comparison of tricyclo-DNA with LNA. Nucleic Acids Res 32:346–353CrossRefPubMedGoogle Scholar
  27. Jacobsen Nana, Nielsen PS, Jeffares DC, Eriksen J, Ohlsson H, Arctander P, Kauppinen S (2004) Direct isolation of poly(A)+ RNA from 4 M guanidine thiocyanate-lysed cell extracts using locked nucleic acid-oligo(T) capture. Nucleic Acids Res 32:e64/1–e64/10CrossRefGoogle Scholar
  28. Jepsen JS, Wengel J (2004) LNA-antisense rivals siRNA for gene silencing. Curr Opin Drug Discov Devel 7:188–194PubMedGoogle Scholar
  29. Kampa D, Cheng IJ, Kapranov P, Yamanaka M, Brubaker S, Cawley S, Drenkow J, Piccolboni A, Bekiranov S, Helt G, Tammana H, Gingeras TR (2004) Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 14:331–342CrossRefPubMedGoogle Scholar
  30. Ke X-S, Liu C-M, Liu D-P, Liang C-C (2003) MicroRNAs: key participants in gene regulatory networks. Curr Opin Chem Biol 7:516–523CrossRefPubMedGoogle Scholar
  31. Khachigian LM, Fahmy RG, Zhang G, Bobryshev YV, Kaniaros A (2002) c-Jun regulates vascular smooth muscle cell growth and neointima formation after arterial injury. Inhibition by a novel DNA enzyme targeting c-Jun. J Biol Chem 277:22985–22991CrossRefPubMedGoogle Scholar
  32. Koshkin AA, Nielsen P, Meldgaard M, Rajwanshi VK, Singh SK, Wengel J (1998a) LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA:LNA duplexes. J Am Chem Soc 120:13252–13253CrossRefGoogle Scholar
  33. Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Olsen CE, Wengel J (1998b) LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54:3607–3630CrossRefGoogle Scholar
  34. Kumar R, Singh SK, Koshkin AA, Rajwanshi VK, Meldgaard M, Wengel J (1998) The first analogues of LNA (locked nucleic acids): Phosphorothioate-LNA and 2′-thio-LNA. Bioorg Med Chem Lett 8:2219–2222CrossRefPubMedGoogle Scholar
  35. Kurreck J, Wyszko E, Gillen C, Erdmann VA (2002) Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 30:1911–1918CrossRefPubMedGoogle Scholar
  36. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858CrossRefPubMedGoogle Scholar
  37. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov J P, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMedGoogle Scholar
  38. Lauritsen A, Dahl BM, Dahl O, Vester B, Wengel J (2003)Methylphosphonate LNA: a locked nucleic acid with a methylphosphonate linkage. Bioorg Med Chem Lett 13:253–256CrossRefPubMedGoogle Scholar
  39. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864PubMedGoogle Scholar
  40. Lipardi C, Wei Q, Paterson BM (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107:297–307CrossRefPubMedGoogle Scholar
  41. Liss B (2002) Improved quantitative real-time RT-PCR for expression profiling of individual cells. Nucleic Acids Res 30:17:e89CrossRefPubMedGoogle Scholar
  42. Morita K, Hasegawa C, Kaneko M, Tsutsumi S, Sone J, Ishikawa T, Imanishi T, Koizumi M (2002) 2′-O,4′-C-Ethylene-bridged nucleic acids (ENA): highly nuclease-resistant and thermodynamically stable oligonucleotides for antisense drug. Bioorg Med Chem Lett 12:73–76CrossRefPubMedGoogle Scholar
  43. Mouritzen P, Nielsen PS, Jacobsen N, Noerholm M, Lomholt C, Pfundheller HM, Ramsing NB, Kauppinen S, Tolstrup N (2004) The ProbeLibrary—expression profiling 99% of all human genes using only 90 dual-labeled real-time PCR probes. Biotechniques 37:492–495Google Scholar
  44. Nielsen KE, Rasmussen J, Kumar R, Wengel J, Jacobsen JP, Petersen M (2004) NMR studies of fully modified Locked nucleic acid (LNA) hybrids: solution structure of an LNA:RNA hybrid and characterization of an LNA:DNA hybrid. Bioconjug Chem 15:449–457PubMedGoogle Scholar
  45. Obika S, Nanbu D, Hari Y, Morio K-I, In Y, Ishida T, Imanishi T (1997) Synthesis of 2′-O,4′-C-methyleneuridine and-cytidine novel bicyclic nucleosides having a fixed C3′-endo sugar puckering. Tetrahedron Lett 38:8735–8738CrossRefGoogle Scholar
  46. Obika S, Nanbu D, Hari Y, Andoh J-I, Morio K-I, Doi T, Imanishi T (1998) Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Lett 39:5401–5404CrossRefGoogle Scholar
  47. Obika S, Hemamayi R, Masuda T, Sugimoto T, Nakagawa S, Mayumi T, Imanishi T (2001) Inhibition of ICAM-1 gene expression by antisense 2′,4′-BNA oligonucleotides. Nucleic Acids Res Suppl 1:145–146PubMedGoogle Scholar
  48. Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21:74–81CrossRefPubMedGoogle Scholar
  49. Petersen M, Bondensgaard K, Wengel J, Petersen JP (2002) Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA:RNA hybrids. J Am Chem Soc 124:5974–5982CrossRefPubMedGoogle Scholar
  50. Pfundheller HM, Sorensen AM, Lomholt C, Johansen AM, Koch T, Wengel J (2005) Locked nucleic acid synthesis. Methods Mol Biol 288:127–146PubMedGoogle Scholar
  51. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedGoogle Scholar
  52. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D et al. (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933CrossRefPubMedGoogle Scholar
  53. Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 94:4262–4266PubMedGoogle Scholar
  54. Schubert S, Gul DC, Grunert HP, Zeichhardt H, Erdmann VA, Kurreck J (2003) RNA cleaving “10–23”DNAzymeswith enhanced stability and activity. Nucleic Acids Res 31:5982–599CrossRefPubMedGoogle Scholar
  55. Schubert S, Fürste JP, Werk D, Grunert H-P, Zeichhardt H, Erdmann VA, Kurreck J (2004) Gaining target access for deoxyribozymes. J Mol Biol 339:355–363CrossRefPubMedGoogle Scholar
  56. Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208CrossRefPubMedGoogle Scholar
  57. Singh SK, Nielsen P, Koshkin AA, Wengel J (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun 4:455–456Google Scholar
  58. Sørensen MD, Kvaernø L, Bryld T, Håkansson AE, Verbeure B, Gaubert G, Herdewijn P, Wengel J (2002) α-L-ribo-configured locked nucleic acid (α-L-LNA): synthesis and properties. J Am Chem Soc 124:2164–2PubMedGoogle Scholar
  59. Tolstrup N, Nielsen PS, Kolberg JG, Frankel AM, Vissing H, Kauppinen S (2003) OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res 31:3758–3762CrossRefPubMedGoogle Scholar
  60. Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175CrossRefPubMedGoogle Scholar
  61. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D (2001) The sequence of the human genome. Science 291:1304–1351CrossRefPubMedGoogle Scholar
  62. Vester B, Wengel J (2004) LNA (locked nucleic acid): high affinity targeting of complementary RNA and DNA. Biochemistry 43:13233–13241PubMedGoogle Scholar
  63. Vester B, Lundberg L, Sørensen MD, Babu BR, Douthwaite S, Wengel J ((2002) LNAzymes: incorporation of LNA-type monomers into DNAzymes markedly increases RNA cleavage. J Am Chem Soc 124:13682–13683CrossRefPubMedGoogle Scholar
  64. Wahlestedt C, Salmi P, Good L, Kela J, Johnsson T, Hokfelt T, Broberger C, Porreca F, Lai J, Ren K, Ossipov M, Koshkin A, Jakobsen N, Skouv J, Oerum H, Jacobsen MH, Wengel J (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci USA 97:5633–5638CrossRefPubMedGoogle Scholar
  65. Wengel J (1999) Synthesis of 3′-C-and 4′-C-branched oligonucleotides and the development of locked nucleic acid (LNA). Acc Chem Res 32:301–310CrossRefGoogle Scholar
  66. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RHA (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310–311CrossRefPubMedGoogle Scholar
  67. Wong GK, Passey DG, Yu J (2001) Most of the human genome is transcribed. Genome Res 11:1975–1977PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • S. Kauppinen
    • 1
  • B. Vester
    • 2
  • J. Wengel
    • 3
  1. 1.Department of Functional Genomics, ExiqonVedbaekDenmark
  2. 2.Nucleic Acid Center, Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
  3. 3.Nucleic Acid Center, Department of ChemistryUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations