Advertisement

Numerical Methods for Nonlinear Experimental Design

  • Stefan Körkel
  • Ekaterina Kostina
Conference paper

Summary

Nonlinear experimental design leads to a challenging class of optimization problems which occur in the procedure of the validation of process models. This paper discusses the formulation of such problems for a general class of underlying process models, presents numerical methods for the solution and shows their successful application to industrial processes.

Key words

experimental design parameter estimation variance-covariance matrix multiple experiments nonlinear constrained optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. C. Atkinson and A. N. Donev. Optimum Experimental Designs. Oxford University Press, 1992.Google Scholar
  2. [2]
    A. E. Altmann-Dieses, J. P. Schlöder, H. G. Bock, and O. Richter. Optimal experimental design for parameter estimation in column outflow experiments. Water Resources Research, 38(10), 2002.Google Scholar
  3. [3]
    I. Bauer, H. G. Bock, S. Körkel, and J. P. Schlöder. Numerical methods for initial value problems and derivative generation for DAE models with application to optimum experimental design of chemical processes. In F. Keil, W. Mackens, H. Voss, and J. Werther, editors, Scientific Computing in Chemical Engineering II, volume 2, pages 282–289, Berlin, Heidelberg, 1999. Springer-Verlag.Google Scholar
  4. [4]
    I. Bauer, H. G. Bock, S. Körkel, and J. P. Schlöder. Numerical methods for optimum experimental design in DAE systems. Journal of Computational and Applied Mathematics, 120:1–25, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    I. Bauer, H. G. Bock, and J. P. Schlöder. DAESOL — a BDF code for the numerical solution of differential-algebraic equations. Preprint, IWR der Universität Heidelberg, SFB 359, November 1999.Google Scholar
  6. [6]
    I. Bauer, M. Heilig, S. Körkel, A. Kud, A. Mayer, and O. Wörz. Versuchsplanung am Beispiel einer Phosphin-und Urethanreaktion. 14. 10. 1998.Google Scholar
  7. [7]
    H. G. Bock, E. Kostina, and J. P. Schlöder. On the role of natural level functions to achieve global convergence for damped newton methods. In M. J. D. Powell and S. Scholtes, editors, System Modelling and Optimization: Methods, Theory and Applications, 19th IFIP TC7 Conference on System Modelling and Optimization, July 12–16, 1999, Cambridge, UK, volume 174 of IFIP Conference Proceedings, pages 51–74. Kluwer, 2000.Google Scholar
  8. [8]
    H. G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. Bonner Mathematische Schriften 183, 1987.Google Scholar
  9. [9]
    M. Baltes, R. Schneider, C. Sturm, and M. Reuss. Optimal Experimental Design for Parameter Estimation in Unstructured Growth Models. Biotechnol. Prog., 10:480–488, 1994.CrossRefGoogle Scholar
  10. [10]
    V. G. Dovi, A. P. Reverberi, and L. Acevedo-Duarte. New Procedure for Optimal Design of Sequential Experiments in Kinetic Models. Ind. Eng. Chem. Res., 33:62–68, 1994.CrossRefGoogle Scholar
  11. [11]
    V. V. Fedorov. Theory of Optimal Experiments. Probability And Mathematical Statistics. Academic Press, London, 1972.Google Scholar
  12. [12]
    P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Opt., 12:979–1006, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Griewank. Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation. Frontiers in Applied Mathematics. SIAM, 2000.Google Scholar
  14. [14]
    L. M. Haines. Optimal Design For Nonlinear Regression Models. Commun. Statist.-Theory Meth., 22(6):1613–1627, 1993.zbMATHGoogle Scholar
  15. [15]
    R. Hettich and K. O. Kortanek. Semi-infinite programming: Theory, methods, and applications. SIAM Review, 35(3):380–429, 1993.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. Körkel, I. Bauer, H. G. Bock, and J. P. Schlöder. A sequential approach for nonlinear optimum experimental design in DAE systems. In F. Keil, W. Mackens, H. Voss, and J. Werther, editors, Scientific Computing in Chemical Engineering II, volume 2, pages 338–345, Berlin, Heidelberg, 1999. Springer-Verlag.Google Scholar
  17. [17]
    S. Körkel, E. Kostina, H. G. Bock, and J. P. Schlöder. Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes. Optimization Methods and Software, to appear in 2004.Google Scholar
  18. [18]
    S. Körkel. Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen. PhD thesis, Universität Heidelberg, available at http://www.ub.uni-heidelberg.de/archiv/2980, 2002.Google Scholar
  19. [19]
    T. W. Lohmann, H. G. Bock, and J. P. Schlöder. Numerical Methods for Parameter Estimation and Optimal Experiment Design in Chemical Reaction Systems. Ind. Eng. Chem. Res., 31:54–57, 1992.CrossRefGoogle Scholar
  20. [20]
    T. W. Lohmann. Ein numerisches Verfahren zur Berechnung optimaler Versuchspläne für beschränkte Parameteridentifizierungsprobleme. Reihe Informatik. Verlag Shaker, Aachen, 1993.Google Scholar
  21. [21]
    P. Oinas, I. Turunen, and H. Haario. Experimental Design With Steady-State And Dynamic Models Of Multiphase Reactors. Chemical Engineering Science, 47(13/14):3689–3696, 1992.CrossRefGoogle Scholar
  22. [22]
    F. Pukelsheim. Optimal Design of Experiments. John Wiley & Sons, Inc., New York, 1993.zbMATHGoogle Scholar
  23. [23]
    Z. H. Qureshi, T. S. Ng, and G. C. Goodwin. Optimum experimental design for identification of distributed parameter systems. Int. J. Control, 31(1):21–29, 1980.MathSciNetzbMATHGoogle Scholar
  24. [24]
    P. M. Reilly, R. Bajramovic, G. E. Blau, D. R. Branson, and M. W. Sauerhoff. Guidelines for the Optimal Design of Experiments to Estimate Parameters in First Order Kinetic Models. The Canadian Journal of Chemical Engineering, 55:614, 1977.CrossRefGoogle Scholar
  25. [25]
    P. E. Rudolph and G. Herrendörfer. Optimal Experimental Design and Accuracy of Parameter Estimation for Nonlinear Regression Models Used in Long-term Selection. Biom. J., 37(2):183–190, 1995.zbMATHGoogle Scholar
  26. [26]
    J. P. Schlöder. Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung. Dissertation, Hohe Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-Universität zu Bonn, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefan Körkel
    • 1
  • Ekaterina Kostina
    • 1
  1. 1.Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergHeidelbergGermany

Personalised recommendations