Nonlinear Inverse Problems: Theoretical Aspects and Some Industrial Applications

  • Heinz W. Engl
  • Philipp Kügler
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 6)


Inverse Problem Regularization Parameter Regularization Method Direct Problem Implied Volatility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ARS00]
    R.G. Airapetyan, A.G. Ramm, A.B. Smirnova, Continuous methods for solving nonlinear ill-posed problems, Fields Institute Communications 25, 111–137 (2000)MathSciNetGoogle Scholar
  2. [And86]
    R.S. Anderssen, The linear functional strategy for improperly posed problems, in: J. Cannon, U. Hornung, eds., Inverse Problems, Birkhäuser, Basel, 11–30 (1986)Google Scholar
  3. [AFHS97]
    M. Avellaneda, C. Friedman, R. Holmes, D. Samperi, Calibrating Volatility Surfaces Via Relative-Entropy Minimization, Applied Mathematical Finance 4, 37–64 (1997)zbMATHGoogle Scholar
  4. [BG67]
    G. Backus, F. Gilbert, Numerical applications of a formalism for geophysical inverse problems, Geophys. J. R. Astron. Soc. 13, 247–276 (1967)Google Scholar
  5. [Bak92]
    A.B. Bakushinskii, The problem of the convergence of the iteratively regularized Gauss-Newton method, Comput. Math. Math. Phys. 32, 1353–1359 (1992)MathSciNetzbMATHGoogle Scholar
  6. [BB01]
    T. Banks, K.L. Bihari, Modeling and estimating uncertainty in parameter estimation, Inverse Problems 17, 1–17 (2001)CrossRefMathSciNetGoogle Scholar
  7. [BK89]
    H. Banks, K. Kunisch, Parameter Estimation Techniques for Distributed Systems, Birkhäuser, Boston (1989)zbMATHGoogle Scholar
  8. [BBC85]
    J. Beck, B. Blackwell, C.S. Clair, Inverse Heat Conduction: Ill-Posed Problems; Wiley, New York (1985)zbMATHGoogle Scholar
  9. [BB98]
    M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging, Inst. of Physics Publ., Bristol (1998)zbMATHGoogle Scholar
  10. [BEGNS94]
    A. Binder, H. W. Engl, C. W. Groetsch, A. Neubauer and O. Scherzer, Weakly closed nonlinear operators and parameter identification in parabolic equations by Tikhonov regularization, Appl. Anal. 55, 215–234 (1994)MathSciNetzbMATHGoogle Scholar
  11. [BES03]
    A. Binder, H.W. Engl, A. Schatz, Advanced numerical techniques for pricing financial derivatives, Derivatives Week Vol. XII 17, 6–7 (2003)Google Scholar
  12. [BS77]
    F. Black, M. Scholes, The pricing of options and corporate liabilities, J. of Political Economy 81, 637–659 (1973)CrossRefGoogle Scholar
  13. [BNS97]
    B. Blaschke, A. Neubauer, O. Scherzer, On convergence rates for the iteratively regularized Gauss-Newton method, IMA Journal of Numerical Analysis 17, 421–436 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  14. [BI99]
    I. Bouchouev, V. Isakov, Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets, Inverse Problems 15, R95–R116 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  15. [Bra87]
    H. Brakhage, On ill-posed problems and the method of conjugate gradients, in [EG87], 165–175Google Scholar
  16. [BU97]
    R.M. Brown, G.A. Uhlmann, Uniqueness in the inverse conductivity problem for non-smooth conductivities in two dimensions, Commun. Part. Diff. Equ. 22, 1009–27 (1997)MathSciNetzbMATHGoogle Scholar
  17. [Bur03]
    M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction, Interfaces and Free Boundaries 5, 301–329 (2003)MathSciNetzbMATHGoogle Scholar
  18. [Bur01]
    M. Burger, A level set method for inverse problems, Inverse Problems 17, 1327–1356 (2001)MathSciNetzbMATHGoogle Scholar
  19. [BE00]
    M. Burger, H.W. Engl, Training neural networks with noisy data as an ill-posed problem, Adv. Comp. Math. 13, 335–354 (2000)MathSciNetzbMATHGoogle Scholar
  20. [CE00]
    C. Carthel, H.W. Engl, Identification of heat transfer functions in continuous casting of steel by regularization, J. Inv. Ill-Posed Problems 8, 677–693 (2000)MathSciNetzbMATHGoogle Scholar
  21. [CCE00]
    C. Chiarella, M. Craddock, N. El-Hassan, The Calibration of Stock Option Pricing Models Using Inverse Problem Methodology, QFRQ Research Papers, UTS Sydney (2000)Google Scholar
  22. [CER90]
    D. Colton, R. Ewing, and W. Rundell, Inverse Problems in Partial Differential Equations, SIAM, Philadelphia (1990)zbMATHGoogle Scholar
  23. [CK92]
    D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer, Berlin (1992)zbMATHGoogle Scholar
  24. [Cre03a]
    S. Crepey, Calibration of the local volatility in a trinomial tree using Tikhonov regularization, Inverse Problems 19, 91–127 (2003)MathSciNetzbMATHGoogle Scholar
  25. [Cre03b]
    S. Crepey, Calibration of the local volatility in a generalized Black-Scholes model using Tikhonov regularization, SIAM J. Math. Anal. 354, 1183–1206 (2003)MathSciNetGoogle Scholar
  26. [DES98]
    P. Deuflhard, H.W. Engl, O. Scherzer, A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions, Inverse Problems 14, 1081–1106 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  27. [DZSKFES98]
    H. Druckenthaner, H. Zeisel, A. Schiefermüller, G. Kolb, A. Ferstl, H. Engl, A. Schatz, Online simulation of the blast furnace, Advanced Steel, 58–61 (1997-1998)Google Scholar
  28. [Dup94]
    B. Dupire, Pricing with a smile, RISK 7, 18–20 (1994)Google Scholar
  29. [Egg01]
    H. Egger, Identification of Volatility Smiles in the Black Scholes Equation via Tikhonov Regularization, Diploma Thesis, University of Linz, Austria (2001)Google Scholar
  30. [Egg93]
    P.P.B. Eggermont, Maximum entropy regularization for Fredholm integral equations of the first kind, SIAM J. Math. Anal. 24, 1557–1576 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  31. [Eng82]
    H.W. Engl, On least squares collocation for solving linear integral equations of the first kind with noisy right-hand side, Boll. Geodesia Sc. Aff. 41, 291–313 (1982)Google Scholar
  32. [Eng93]
    H.W. Engl, Regularization methods for the stable solution of inverse problems, Surveys on Mathematics for Industry 3 71–143 (1993)MathSciNetzbMATHGoogle Scholar
  33. [EG88]
    H.W. Engl, H. Gfrerer, A posteriori parameter choice for general regularization methods for solving linear ill-posed problems, Appl. Numer. Math. 4, 395–417 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  34. [EG94]
    H.W. Engl, W. Grever, Using the L-curve for determining optimal regularization parameters, Numerische Mathematik 69, 25–31 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  35. [EG87]
    H.W. Engl, C. W. Groetsch, Inverse and Ill-Posed Problems, Academic Press, Orlando, (1987)zbMATHGoogle Scholar
  36. [EHN96]
    H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht (1996) (Paperback edition 2000)zbMATHGoogle Scholar
  37. [EKN89]
    H.W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularization of nonlinear ill-posed problems, Inverse Problems 5, 523–540 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  38. [EL93]
    H.W. Engl, G. Landl, Convergence rates for maximum entropy regularization, SIAM J. Numer. Anal. 30, 1509–1536 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  39. [EL96]
    H.W. Engl, T. Langthaler, Maximum entropy regularization of nonlinear ill-posed problems, in: V. Lakshmikantham, ed., Proceedings of the First World Congress of Nonlinear Analysts, Vol. I, de Gruyter, Berlin, 513–525 (1996)Google Scholar
  40. [EL88]
    H.W. Engl, T. Langthaler, Control of the solidification front by secondary cooling in continuous casting of steel, in: H.W. Engl, H. Wacker and W. Zulehner, eds. Case Studies in Industrial Mathematics Teubner, Stuttgart, 51–77 (1988)Google Scholar
  41. [EL01]
    H.W. Engl, A. Leitao, A Mann iterative regularization method for elliptic Cauchy problems, Numer. Func. Anal. Optim. 22, 861–884 (2001)MathSciNetzbMATHGoogle Scholar
  42. [ELR96a]
    H. W. Engl, A. K. Louis and W. Rundell (eds.), Inverse Problems in Geophysics, SIAM, Philadelphia, (1996)Google Scholar
  43. [ELR96b]
    H.W. Engl, A.K. Louis, W. Rundell (eds.), Inverse Problems in Medical Imaging and Non-Destructive Testing, Springer, Vienna, New York (1996)Google Scholar
  44. [EN88]
    H.W. Engl, A. Neubauer, Convergence rates for Tikhonov regularization in finite dimensional subspaces of Hilbert scales, Proc. Amer. Math. Soc. 102, 587–592 (1988)MathSciNetzbMATHGoogle Scholar
  45. [ER95]
    H. W. Engl, W. Rundell (eds.), Inverse Problems in Diffusion Processes, SIAM, Philadelphia (1995)zbMATHGoogle Scholar
  46. [ES00]
    H.W. Engl, O. Scherzer, Convergence rate results for iterative methods for solving nonlinear ill-posed problems, in: D. Colton, H.W. Engl, A.K. Louis, J. McLaughlin, W.F. Rundell (eds.), Surveys on Solution Methods for Inverse Problems, Springer, Vienna/New York, 7–34 (2000)Google Scholar
  47. [EW85]
    H.W. Engl, A. Wakolbinger, Continuity properties of the extension of a locally Lipschitz continuous map to the space of probability measures, Monatshefte f. Math. 100, 85–103 (1985)MathSciNetGoogle Scholar
  48. [Gre98]
    W. Grever, A nonlinear parabolic initial boundary value problem modeling the continuous casting of steel with variable casting speed, ZAMM 78, 109–119 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  49. [GBEM95]
    W. Grever, A. Binder, H.W. Engl, K. Mörwald, Optimal cooling strategies in continuous casting of steel with variable casting speed, Inverse Problems in Engineering 2, 289–300 (1995)Google Scholar
  50. [Gro72]
    C.W. Groetsch, A note on segmenting Mann iterates, J. Math. Anal. Appl. 40, 369–372 (1972)CrossRefMathSciNetzbMATHGoogle Scholar
  51. [Gro77]
    C.W. Groetsch, Generalized Inverses of Linear Operators: Representation and Approximation, Dekker, New York (1977)zbMATHGoogle Scholar
  52. [Gro93]
    C.W. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg, Braunschweig (1993)zbMATHGoogle Scholar
  53. [GN88]
    C.W. Groetsch, A. Neubauer, Convergence of a general projection method for an operator equation of the first kind, Houston J. Math. 14, 201–208 (1988)MathSciNetzbMATHGoogle Scholar
  54. [Han97]
    M. Hanke, A regularizing Levenberg-Marquardt scheme with applications to inverse groundwater filtration problems, Inverse Problems 13, 79–95 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  55. [Han95]
    M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Longman Scientific & Technical, Harlow, Essex, (1995)zbMATHGoogle Scholar
  56. [HH93]
    M. Hanke, P.C. Hansen, Regularization methods for large-scale problems, Surveys Math. Indust. 3, 253–315 (1993)MathSciNetzbMATHGoogle Scholar
  57. [HNS95]
    M. Hanke, A. Neubauer, O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numerische Mathematik 72, 21–37 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  58. [HO93]
    P.C. Hansen, D.P. O’Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput. 14, 1487–1503 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  59. [HN88]
    J. Haslinger, P. Neittaanmäki, Finite Element Approximation for Optimal Shape Design: Theory and Applications, John Wiley & Sons Ltd., Chichester (1988)zbMATHGoogle Scholar
  60. [Hof99]
    B. Hofmann, Mathematik inverser Probleme, Teubner, Stuttgart (1999)zbMATHGoogle Scholar
  61. [Hoh97]
    T. Hohage, Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem, Inverse Problems 13, 1279–1299 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  62. [IN99]
    D. Isaacson, J.C. Newell, Electrical Impedance Tomography, SIAM Review 41, 85–101 (1999)MathSciNetzbMATHGoogle Scholar
  63. [Isa98]
    V. Isakov, Inverse Problems in Partial Differential Equations, Springer, Berlin, New York (1998)Google Scholar
  64. [JSH99]
    N. Jackson, E. Süli, S. Howison, Computation of Deterministic Volatility Surfaces, Journal of Computational Finance 2, (1998/99)Google Scholar
  65. [Kal01]
    B. Kaltenbacher, On the regularizing properties of a full multigrid method for ill-posed problems, Inverse Problems 17, 767–788 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  66. [KNR02]
    B. Kaltenbacher, A. Neubauer, A.G. Ramm, Convergence rates of the continuous regularized Gauss-Newton method, J. Inv. Ill-Posed Problems 10, 261–280 (2002)MathSciNetzbMATHGoogle Scholar
  67. [Kin92]
    J. King, Multilevel algorithms for ill-posed problems, Numerische Mathematik 61, 311–334 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  68. [Kir96]
    A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer, New York (1996)zbMATHGoogle Scholar
  69. [KSB88]
    A. Kirsch, B. Schomburg and G. Berendt, The Backus-Gilbert method, Inverse Problems 4, 771–783 (1988)MathSciNetzbMATHGoogle Scholar
  70. [KS85]
    C. Kravaris, J.H. Seinfeld, Identification of parameters in distributed parameter systems by regularization, SIAM J. Control Optim. 23, 217–241 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  71. [Küg03]
    P. Kügler, A Derivative Free Landweber Iteration for Parameter Identification in Elliptic Partial Differential Equations with Application to the Manufacture of Car Windshields, PhD-Thesis, Johannes Kepler Universität Linz, Austria, (2003)Google Scholar
  72. [Küg03]
    P. Kügler, Identification of a temperature dependent heat conductivity from single boundary measurements, SIAM Journal on Numerical Analysis, acceptedGoogle Scholar
  73. [KE02]
    P. Kügler, H.W. Engl, Identification of a temperature dependent heat conductivity by Tikhonov regularization, Journal of Inverse and Ill-posed Problems 10, 67–90 (2002)MathSciNetzbMATHGoogle Scholar
  74. [KL03]
    P. Kügler, A. Leitao, Mean value iterations for nonlinear elliptic Cauchy problems, Numerische Mathematik, accepted for publicationGoogle Scholar
  75. [LO97]
    R. Lagnado, S. Osher, A Technique for Calibrating Derivative Security Pricing Models: Numerical Solution of an Inverse Problem, JCF 1, (1997)Google Scholar
  76. [LA96]
    G. Landl, R.S. Anderssen, Non-negative differentially constrained entropylike regularization, Inverse Problems 12, 35–53 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  77. [LS03]
    A. Leitao, O. Scherzer, On the relation between constraint regularization, level sets and shape optimization, Inverse Problems 19, L1–L11 (2003)MathSciNetzbMATHGoogle Scholar
  78. [LY98]
    A. Leonov, A. Yagola, Special regularizing methods for ill-posed problems with sourcewise represented solutions, Inverse Problems 14, 1539–1550 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  79. [LY01]
    J. Lishang, T. Youshan, Identifying the volatility of underlying assets from option prices, Inverse Problems 17, 137–155 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  80. [Lou87]
    A.K. Louis, Convergence of the conjugate gradient method for compact operators, in [EG87], 177–183Google Scholar
  81. [Lou899]
    A.K. Louis, Inverse und schlecht gestellte Probleme, Teubner, Stuttgart (1989)zbMATHGoogle Scholar
  82. [LM90]
    A.K. Louis, P. Maass, A mollifier method for linear operator equations of the first kind, Inverse Problems 6 427–440 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  83. [Man53]
    W.R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4, 506–510 (1953)zbMATHGoogle Scholar
  84. [Nas76]
    M. Z. Nashed, Generalized Inverses and Applications, Academic Press, New York (1976)zbMATHGoogle Scholar
  85. [NS98]
    M.Z. Nashed, O. Scherzer, Least squares and bounded variation regularization with nondifferentiable functional, Num. Funct. Anal. and Optimiz. 19, 873–901 (1998)MathSciNetzbMATHGoogle Scholar
  86. [Nat77]
    F. Natterer, Regularisierung schlecht gestellter Probleme durch Projektionsverfahren, Numer. Math. 28, 329–341 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  87. [Nat86]
    F. Natterer, The Mathematics of Computerized Tomography, Teubner, Stuttgart (1986)zbMATHGoogle Scholar
  88. [Neu89]
    A. Neubauer, Tikhonov regularization for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation, Inverse Problems 5, 541–557 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  89. [NS90]
    A. Neubauer, O. Scherzer, Finite-dimensional approximation of Tikhonov regularized solutions of non-linear ill-posed problems, Numer. Funct. Anal. and Optimiz. 11, 85–99 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  90. [OF02]
    S. Osher, R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, New York (2002)Google Scholar
  91. [OS01]
    S. Osher, F. Santosa, Level set methods for optimization problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum, J. Comp. Phys. 171, 272–288 (2001)MathSciNetzbMATHGoogle Scholar
  92. [OG69]
    C. Outlaw, C.W. Groetsch, Averaging iteration in a Banach space, Bull. Am. Math. Soc. 75, 430–432 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  93. [PV90]
    R. Plato, G. Vainikko, On the regularization of projection methods for solving ill-posed problems, Numer. Math. 57, 63–79 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  94. [RSW00]
    E. Radmoser, O. Scherzer, J. Weickert, Scale-space properties of nonstationary iterative regularization methods, Journal of Visual Communication and Image Representation 11, 96–114 (2000)CrossRefGoogle Scholar
  95. [RW98]
    E. Radmoser, R. Wincor, Determining the inner contour of a furnace from temperature measurements, Industrial Mathematics Institute, Johannes Kepler Universität Linz, Technical Report 12 (1998)Google Scholar
  96. [Ram99]
    R. Ramlau, A modified Landweber-method for inverse problems, Num. Funct. Anal. Opt. 20, 79–98 (1999)MathSciNetzbMATHGoogle Scholar
  97. [Ram86]
    A.G. Ramm, Scattering by Obstacles, Reidel, Dordrecht, (1986)zbMATHGoogle Scholar
  98. [Rau84]
    T. Raus, Residue principle for ill-posed problems, Acta et Comment. Univers. Tartuensis 672, 16–26 (1984)MathSciNetzbMATHGoogle Scholar
  99. [Reb98]
    R. Rebonato, Interest-Rate Option Models, 2nd edition, Wiley, New York (1998)zbMATHGoogle Scholar
  100. [Rud94]
    L.I. Rudin, S. Osher, Total variation based restoration with free local constraints, Proc. of IEEE Int. Conf. on Image Processing, Austin, Tx., 31–35 (1994)Google Scholar
  101. [San96]
    F. Santosa, A level-set approach for inverse problems involving obstacles, ESAIM: Control, Optimization and Calculus of Variations 1, 17–33 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  102. [Sch00]
    A. Schatz, Lump, Ore, Pellets, and Dead Men — Mathematical Modelling and Numerical Simulation of the COREX Reduction Shaft, PhD-Thesis, University of Linz, Austria (2000)Google Scholar
  103. [Shr97]
    S. Shreve, Stochastic Calculus and Finance,çchal/shreve.html (1997)Google Scholar
  104. [Sch98]
    O. Scherzer, A modified Landweber iteration for solving parameter estimation problems, Applied Mathematics and Optimization 38, 45–68 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  105. [Sch98b]
    O. Scherzer, An iterative multi level algorithm for solving nonlinear illposed problems, Numerische Mathematik 80, 579–600 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  106. [Sch95]
    O. Scherzer, Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems, Journal of Mathematical Analysis and Applications 194, 911–933 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  107. [Sch02]
    O. Scherzer, Explicit versus implicite relative error regularization on the space of functions of bounded variation, Contemporary Methematics 313, 171–198 (2002)MathSciNetzbMATHGoogle Scholar
  108. [Sch03]
    O. Scherzer, Scale space methods for denoising and inverse problems, Advances in Imaging and Electron Physics, accepted for publicationGoogle Scholar
  109. [SEK93]
    O. Scherzer, H.W. Engl, K. Kunisch, Optimal a-posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J. Numer. Anal. 30, 1796–1838 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  110. [SG01]
    O. Scherzer, C.W. Groetsch, Scale-Space and Morphology in Computer Vision, Springer Lecture Notes in Computer Science 2106, Springer, Berlin, 317–325 (2001)Google Scholar
  111. [Sch85]
    E. Schock, Approximate solution of ill-posed equations: arbitrarily slow convergence vs. superconvergence, in: G. Hämmerlin and K. Hoffmann, eds., Constructive Methods for the Practical Treatment of Integral Equations, Birkhäuser, Basel, 234–243 (1985)Google Scholar
  112. [Set99]
    J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 2nd edition, Cambridge (1999)Google Scholar
  113. [TMO98]
    M. Tanaka, T. Matsumoto, S. Oida, Identification of unknown boundary shape of rotationally symmetric body in steady heat conduction via BEM and filter theories, in: M. Tanaka and G.S. Dulikravich eds., Inverse Problems in Engineering Mechanics, Elsevier Science B.V., Tokyo, 121–130 (1998)Google Scholar
  114. [Tau94]
    U. Tautenhahn, On the asymptotic regularization of nonlinear ill-posed problems, Inverse Problems 10, 1405–1418 (1994)MathSciNetzbMATHGoogle Scholar
  115. [Unr]
    UnRisk Documentation for the UnRisk PRICING ENGINE for Mathematica, urlGoogle Scholar
  116. [Vas87]
    V.V. Vasin, Iterative methods for the approximate solution of ill-posed problems with a priori informations and their applications, in: [EG87], 211–229 (1987)Google Scholar
  117. [Vas92]
    V.V. Vasin, Ill-posed problems and iterative approximation of fixed points of pseudo-contractive mappings, in: A.N. Tikhonov, A.S. Leonov, A.I. Prilepko, I.A. Vasin, V.A. Vatutin, A.G. Yagola, eds., Ill-Posed Problems in Natural Sciences, VSP, Utrecht, 1992, 214–223, (1992)Google Scholar
  118. [Vas98]
    V.V. Vasin, On the convergence of gradient-type methods for nonlinear equations, Doklady Mathematics 57, 173–175 (1998) translated from Doklady Akademii Nauk 359, 7-9 (1998)zbMATHGoogle Scholar
  119. [VA95]
    V.V. Vasin, A.L. Ageev, Ill-Posed Problems with A-Priori Information, VSP, Utrecht (1995)zbMATHGoogle Scholar
  120. [Vog96]
    C.R. Vogel, Non-convergence of the L-curve regularization parameter selection method, Inverse Problems 12, 535–547 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  121. [Wah90]
    G. Wahba, Spline Models for Observational Data, SIAM, Philadelphia (1990)zbMATHGoogle Scholar
  122. [Wil98]
    P. Wilmott, Derivatives — The Theory and Practice of Financial Engineering, Wiley, New York, (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Heinz W. Engl
    • 1
    • 2
  • Philipp Kügler
    • 2
  1. 1.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria
  2. 2.Institut für IndustriemathematikJohannes Kepler UniversitätLinzAustria

Personalised recommendations