Advertisement

Runout prediction methods

  • Dieter Rickenmann
Part of the Springer Praxis Books book series (PRAXIS)

Keywords

Prediction Method Runout Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

13.7 References

  1. Ayotte, D. and Hungr, O. (2000) Calibration of a runout prediction model for debris flows and avalanches. In: G.F. Wieczorek and N.D. Naeser (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 2nd International Conference, Taipei, Taiwan (pp. 505–514). A.A. Balkema, Rotterdam.Google Scholar
  2. Bathurst, J.C., Burton A., and Ward, T.J. (1997) Debris flow run-out and landslide sediment delivery model tests. Journal of Hydraulic Engineering, 123(5), 410–419.CrossRefGoogle Scholar
  3. Benda, L.E. and Cundy, T.W. (1990) Predicting deposition of debris flows in mountain channels. Canadian Geotechnical Journal, 27, 409–417.Google Scholar
  4. Cannon, S.H. (1989) An approach for estimating debris flow runout distances. In: Proceedings Conference XX, International Erosion Control Association, Vancouver, British Columbia (pp. 457–468).Google Scholar
  5. Cannon, S.H. (1993) An empirical model for the volume-change behavior of debris flows. In: H.W. Shen, S.T. Su, and F. Wen (eds), Hydraulic Engineering '93 (Vol. 2, pp. 1768–1773). American Society of Civil Engineers, New York.Google Scholar
  6. Corominas, J. (1996) The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 33, 260–271.Google Scholar
  7. Crosta, G.B., Cucchiaro, S., and Frattini, P. (2003) Validation of semi-empirical relationships for the definition of debris-flow behavior in granular materials. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 821–831). Millpress, Rotterdam.Google Scholar
  8. Denlinger, R.P. and Iverson, R.M. (2001) Flow of variably fluidized granular masses across three-dimensional terrain. 2: Numerical predictions and experimental tests. Journal of Geophysical Research, 106(B1), 537–552.CrossRefGoogle Scholar
  9. Fannin, R.J. and Wise, M.P. (2001) An empirical-statistical model for debris flow travel distance. Canadian Geotechnical Journal, 38, 982–994.CrossRefGoogle Scholar
  10. Fraccarollo, L. and Papa, M. (2000) Numerical simulation of real debris-flow events. Physics and Chemistry of the Earth, B, 25(9), 757–763.Google Scholar
  11. Gamma, P. (2000) dfwalk—Ein Murgangsimulationprogramm zur Gefahrenzonierung (Geographica Bernensia, G66, 144 pp.). Geographisches Institut der Universität Bern [in German].Google Scholar
  12. Genolet, F. (2002) Modélisation de laves torrentielles: Contribution à la paramétrisation du modèle Voellmy-Perla (70 pp. +annexes). Postgraduate thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland [in French].Google Scholar
  13. Ghilardi, P., Natale, L., and Savi, F. (2003) Experimental investigation and mathematical simulation of debris-flow runout distance and deposition area. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 601–610). Millpress, Rotterdam.Google Scholar
  14. Han, G. and Wang, D. (1996) Numerical modeling of Anhui debris flow. Journal of Hydraulic Engineering, 122(5), 262–265.CrossRefGoogle Scholar
  15. Hofmeister, R.J. and Miller, D.J. (2003) GIS-based modeling of debris-flow initiation, transport and deposition zones for regional hazard assessments in western Oregon, USA. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 1141–1149. Millpress, Rotterdam.Google Scholar
  16. Hungr, O. (1992) Runout prediction for flow-slides and avalanches: Analytical methods. In: Proceedings of the Geotechnical and Natural Hazards Symposium, Vancouver, British Columbia (pp. 139–144). Vancouver Geotechnical Society/Canadian Geotechnical Society and Bitech Publishers, Richmond, Canada.Google Scholar
  17. Hungr, O. (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32, 610–623.CrossRefGoogle Scholar
  18. Hungr, O., Morgan, G.C. and Kellerhals, R. (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Canadian Geotechnical Journal, 21, 663–677.Google Scholar
  19. Hungr, O., Morgan, G.C., VanDine, D.F., and Lister, D.R. (1987) Debris flow defences in British Columbia. In: J.E. Costa and G.F. Wieczorek (eds), Debris Flow: Process, Description and Mitigation (GSA Reviews in Engineering Geology, Vol. 7, pp. 201–222). Geological Society of America, Boulder, CO.Google Scholar
  20. Ikeya, H. (1979) Introduction to Sabo Works: The Preservation of Land against Sediment Disaster (first English edn, 168 pp.). The Japan Sabo Association, Tokyo.Google Scholar
  21. Ikeya, H. (1981) A method of designation for area in danger of debris flow. Erosion and Sediment Transport in Pacific Rim Steeplands (IAHS Publ. No. 132). International Association of Hydrological Sciences, Christchurch, New Zealand.Google Scholar
  22. Ikeya, H. (1989) Debris flow and its countermeasures in Japan. Bulletin International Association of Engineering Geologists, 40, 15–33.CrossRefGoogle Scholar
  23. Imran, J., Parker, G., Locat, J., and Lee, H. (2001) 1D Numerical model of muddy sub-aqueous and subaerial debris flows. Journal of Hydraulic Engineering, 127(11), 959–967.CrossRefGoogle Scholar
  24. Iverson, R.M. (1997) The physics of debris flows. Review of Geophysics, 35(3), 245–296.CrossRefGoogle Scholar
  25. Iverson, R.M. and Denlinger, R.P. (2001) Flow of variably fluidized granular masses across three-dimensional terrain. 1: Coulomb mixture theory. Journal of Geophysical Research, 106 (B1), 537–552.CrossRefGoogle Scholar
  26. Iverson, R.M., Schilling, S.P., and Vallance, J.W. (1998) Objective delineation of lahar-inundation zones. Geological Society of America Bulletin, 110(8), 972–984.CrossRefGoogle Scholar
  27. Jakob, M. and Bovis, M.J. (1996) Morphometric and geotechnical controls of debris flow activity, southern Coast Mountains, British Columbia. Zeitschrift für Geomorphologie, Supplement Band 104, 13–26.Google Scholar
  28. Jin, M. and Fread, D.L. (1999) 1D modeling of mud/debris unsteady flows. Journal of Hydraulic Engineering, 125(8), 827–834.CrossRefGoogle Scholar
  29. Jordan, R.P. (1994) Debris flows in the southern Coast Mountains, British Columbia: Dynamic behaviour and physical properties. Ph.D. thesis, University of British Columbia, Vancouver.Google Scholar
  30. Körner, H.J. (1980) Modelle zur Berechnung der Bergsturz-und Lawinenberechnung. Internationales Symposium “Interpraevent”, Bad Ischl, Austria (Tagungspublikation, Band 2, pp. 15–55). International Forschungsgesellschaft Interpraevent, Klagenfurt, Austria [in German].Google Scholar
  31. Laigle, D., Hector, A.F., Hiibl, J., and Rickenmann, D. (2003) Comparison of numerical simulation of muddy debris flow spreading to records of real events. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 635–646). Millpress, Rotterdam.Google Scholar
  32. Lancaster, S.T., Hayes, S.K., and Grant, G.E. (2003) Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research, 39(6), 1168, doi:10.1029/2001WR001227, 21 pp.CrossRefGoogle Scholar
  33. Legros, F. (2002) The mobility of long-runout landslides. Engineering Geology, 63, 301–331.CrossRefGoogle Scholar
  34. McArdell, B.W., Zanuttigh, B., Lamberti, A., and Rickenmann, D. (2003) Systematic comparison of debris flow laws at the Illgraben torrent, Switzerland. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 647–657). Millpress, Rotterdam.Google Scholar
  35. McDougall, S.D. and Hungr, O. (2003) Objectives for the development of an integrated three-dimensional continuum model for the analysis of landslide runout. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 481–490). Millpress, Rotterdam.Google Scholar
  36. Mizuyama, T., Kobashi, S., and Ou, G. (1992) Prediction of debris flow peak discharge. Internationales Symposium (Tagungspublikation, Band 4, pp. 99–108). Interpraevent, Bern.Google Scholar
  37. Moriwaki, H., Yazaki, S., and Oyagi, N. (1985) A gigantic debris avalanche and its dynamics at Mount Ontake caused by the Naganoken-Seibu earthquake, 1984. In: Proceedings 4th International Conference and Field Workshop on Landslides, 1985, Tokyo (pp. 359–362).Google Scholar
  38. Nakagawa, H., Takahashi, T., and Satofuka, Y. (2000) A debris-flow disaster on the fan of the Harihara River, Japan. In: G.F. Wieczorek and N.D. Naeser (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 2nd International Conference, Taipei, Taiwan (pp. 193–201). A.A. Balkema, Rotterdam.Google Scholar
  39. O'Brien, J.S., Julien, P.Y., and Fullerton, W.T. (1993) Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, 119(2), 244–261.CrossRefGoogle Scholar
  40. Okuda, S. and Suwa, H. (1984) Some relationships between debris flow motion and microtopography for the Kamikamihori fan, North Japan Alps. In: T.P. Burt and D.E. Walling (eds), Catchment Experiments in Fluvial Geomorphology (pp. 447–464). Geo Books, Norwich, UK.Google Scholar
  41. Ouchi, S. and Mizuyama, T. (1989) Volume and movement of Tombi landslide in 1858, Japan. Transactions of the Japanese Geopmorphological Union, 10(1), 27–51.Google Scholar
  42. Perla, R., Cheng, T.T., and McClung, D.M. (1980) A two parameter model of snow avalanche motion. Journal of Glaciology, 26(94), 197–208.Google Scholar
  43. Petrascheck, A. and Kienholz, H. (2003) Hazard assessment and mapping of mountain risks in Switzerland. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 25–38). Millpress, Rotterdam.Google Scholar
  44. Pierson, T.C. (1995) Flow characteristics of large eruption-triggered debris flows at snow-clad volcanoes: Constraints for debris-flow models. Journal of Volcanology and Geothermal Research, 66, 283–294.CrossRefGoogle Scholar
  45. Rickenmann, D. (1990) Debris Flows 1987 in Switzerland: Modelling and Sediment Transport (IAHS Publ. No. 194, pp. 371–378). International Association of Hydrological Sciences, Christchurch, New Zealand.Google Scholar
  46. Rickenmann, D. (1999) Empirical relationships for debris flows. Natural Hazards, 19, 47–77.CrossRefGoogle Scholar
  47. Rickenmann, D. and Koch, T. (1997) Comparison of debris flow modelling approaches. In: C-L. Chen (ed.), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 1st International DFHM Conference, San Francisco, CA (pp. 576–585). American Society of Civil Engineers, New York.Google Scholar
  48. Rickenmann, D. and Weber, D. (2000) Flow resistance of natural and experimental debris flows in torrent channels. In: G.F. Wieczorek and N.D. Naeser (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 2nd International Conference, Taipei, Taiwan (pp. 245–254). A.A. Balkema, Rotterdam.Google Scholar
  49. Rickenmann, D. and Zimmermann, M. (1993) The 1987 debris flows in Switzerland: Documentation and analysis. Geomorphology, 8, 175–189.CrossRefGoogle Scholar
  50. Rickenmann, D., Laigle, D., Lamberti, A., Zanuttigh, B., Armanini, A., Fraccarollo, L., Giuliani, M., Rosati, G., McArdell, B.W., Ng, D., Swartz, M., and Graf, Ch. (2003) Evaluation of Existing Numerical Simulation Models for Debris Flows (Report on work package 3 of the research project THARMIT of the European Union, EU Contract EVG1-CT-1999-00012). EU, Brussels.Google Scholar
  51. Sassa, K. (1988) Geotechnical model for the motion of landslides (Special lecture). In: C. Bonnard (ed.), Proceedings 5th International Symposium on Landslides (Vol. 1, pp. 37–55). A.A. Balkema, Rotterdam.Google Scholar
  52. Salm, B. (1966) Contribution to avalanche dynamics. Proceedings International Symposium on Scientific Aspects of Snow and Ice Avalanches, Christchurch, New Zealand (IAHS Publ. No. 69, pp. 199–214). International Association of Hydrological Sciences, Christchurch, New Zealand.Google Scholar
  53. Savage, S.B. and Hutter, K. (1989) The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215.CrossRefGoogle Scholar
  54. Scheidegger, A.E. (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics, 5, 231–236.CrossRefGoogle Scholar
  55. Scott, K.M., Pringle, P.T., and Vallance, J.W. (1992) Sedimentology, Behavior, and Hazards of Debris Flows at Mount Rainier, Washington (USGS Open-file Report 90-385, 106 pp.). US Geological Survey, Reston, VA.Google Scholar
  56. Takahashi, T. (1991) Debris Flow (IAHR Monograph Series, 165 pp.). International Association for Hydraulic Research, Ecole Polytechnique Fédérale, Lausanne, Switzerland and A.A. Balkema, Rotterdam.Google Scholar
  57. Takahashi, T., Nakagawa, H., Harada, T., and Yamashiki, Y. (1992) Routing debris flows with particle segregation. Journal of Hydraulic Engineering, 118(11), 1490–1507.CrossRefGoogle Scholar
  58. VanDine, D.F. (1996) Debris Flow Control Structures for Forest Engineering (Ministry of Forests Research Program, Working Paper 22/1996, 75 pp.). Government of the Province of British Columbia, Vancouver.Google Scholar
  59. Van Gassen, W. and Cruden, D.M. (1989) Momentum transfer and friction in the debris of rock avalanches. Canadian Geotechnical Journal, 26, 623–628.CrossRefGoogle Scholar
  60. VAW (1992) Murgänge 1987: Dokumentation und Analyse (unpublished report, No. 97.6, 620 pp.). Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, Zurich [in German].Google Scholar
  61. Voellmy, A. (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, 73(12), 159–162, (15), 212–217, (17), 246–249, (19), 280–285 [in German].Google Scholar
  62. Voight, B. and Sousa, J. (1994) Lessons from Ontake-san: A comparative analysis of debris avalanche dynamics. Engineering Geology, 38, 261–297.CrossRefGoogle Scholar
  63. Wise, M.P. (1997) Probabilistic modelling of debris flow travel distance using empirical volumetric relationships. M.Sc. thesis, University of British Columbia, Vancouver.Google Scholar
  64. Zimmermann, M., Mani, P., Gamma, P., Gsteiger, P., Heiniger, O., and Hunziker, G. (1997) Murganggefahr und Klimadnderung: ein GIS-basierter Ansatz. (Schlussbericht NFP 31, 161 pp.). ETH, Zurich [in German].Google Scholar

Copyright information

© Praxis. Springer Berlin Heidelberg 2005

Authors and Affiliations

  • Dieter Rickenmann

There are no affiliations available

Personalised recommendations