Advertisement

Using Krylov-Schwarz methods in an adaptive mesh refinement environment

  • Kai Germaschewski
  • Amitava Bhattacharjee
  • Rainer Grauer
  • David Keyes
  • Barry Smith
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 41)

Keywords

Current Sheet Adaptive Mesh Incompressible Euler Equation Vortex Dipole Grid Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matt Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc home page. http://www.mcs.anl.gov/petsc, 2001.Google Scholar
  2. 2.
    Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matt Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc users manual. Technical Report ANL-95/11-Revision 2.1.5, Argonne National Laboratory, 2002.Google Scholar
  3. 3.
    Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhauser Press, 1997.Google Scholar
  4. 4.
    J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the incompressible Navier—Stokes equations. J. Comput. Phys., 85:257–283, 1989.MathSciNetCrossRefGoogle Scholar
  5. 5.
    O. N. Boratav and R. B. Pelz. Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. Phys. Fluids, 6:2757–2784, 1994.CrossRefGoogle Scholar
  6. 6.
    H. Friedel, R. Grauer, and C. Marliani. Adaptive mesh refinement for singular current sheets in incompressible magnetohydrodynamic flows. J. Comput. Phys., 134:190–198, 1997.CrossRefGoogle Scholar
  7. 7.
    R. Grauer, C. Marliani, and K. Germaschewski. Adaptive mesh refinement for singular solutions of the incompressible Euler equations. Phys. Rev. Lett., 80:4177–4180, 1998.CrossRefGoogle Scholar
  8. 8.
    S. Kida. Three-dimensional periodic flows with high-symmetry. J. Phys. Soc. Jpn., 54:2132, 1985.CrossRefGoogle Scholar
  9. 9.
    S.F. McCormick. Multilevel adaptive methods for partial differential equations, volume 6 of Frontiers in Applied Mathematics. SIAM, 1989.Google Scholar
  10. 10.
    R.B. Pelz. Locally self-similar, finite-time collapse in a high-symmetry vortex filament model. Phys. Rev. E, 55(2):1617–1626, 1997.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kai Germaschewski
    • 1
  • Amitava Bhattacharjee
    • 1
  • Rainer Grauer
    • 2
  • David Keyes
    • 3
  • Barry Smith
    • 4
  1. 1.Center for Magnetic Reconnection Studies, Institute for the Study of Earth, Oceans and SpaceUniversity of New HampshireUK
  2. 2.Lehrstuhl für Theoretische Physik IRuhr-Universit?at BochumGermany
  3. 3.Department of Applied Physics and Applied MathematicsColumbia UniversityUSA
  4. 4.Mathematics and Computer Science DivisionArgonne National LaboratoryUSA

Personalised recommendations