Construction and Application of an AMR Algorithm for Distributed Memory Computers

  • Ralf Deiterding
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 41)


Domain Decomposition Riemann Problem Adaptive Mesh Ghost Cell Parallelization Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BBS94.
    J. Bell, M. Berger, J. Saltzman, and M. Welcome. Three-dimensonal adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comp., 15(1):127–138, 1994.MathSciNetCrossRefGoogle Scholar
  2. BC88.
    M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 82:64–84, 1988.CrossRefGoogle Scholar
  3. BL98.
    M. Berger and R. LeVeque. Adaptive mesh refinement using wave-prop. algorithms for hyperbolic systems. SIAM J. Num. Anal., 35(6):2298–2316, 1998.MathSciNetCrossRefGoogle Scholar
  4. CW93.
    W. Crutchfield and M. L. Welcome. Object-oriented implementation of adaptive mesh refinement algorithms. J. Scientific Prog., 2:145–156, 1993.Google Scholar
  5. Dei03.
    R. Deiterding. Parallel adaptive simulation of multi-dimensional detonation structures. PhD thesis, Techn. Univ. Cottbus, Sep 2003.Google Scholar
  6. DA03.
    R. Deiterding. AMROC-Blockstructured Adaptive Mesh Refinement in Object-oriented C++. Available at, Oct 2003.Google Scholar
  7. KB95.
    S. R. Kohn and S. B. Baden. A parallel software infrastructure for structured adaptive mesh methods. In Proc. of the Conf. on Supercomputing’ 95, Dec 1995.Google Scholar
  8. LeV97.
    R. J. LeVeque. Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys., 131(2):327–353, 1997.zbMATHCrossRefGoogle Scholar
  9. PB96.
    M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid hierarchies. In Proc. 29th Hawaii Int. Conf. on System Sciences, Jan 1996.Google Scholar
  10. PB97.
    M. Parashar and J. C. Browne. System engineering for high performance computing software: The HDDA/DAGH infrastructure for implementation of parallel structured AMR. In Structured Adaptive Mesh Refinement Grid Methods, IMA Volumes in Mathematics and its Applications. Springer, 1997.Google Scholar
  11. RBL00.
    C. A. Rendleman, V. E. Beckner, M. Lijewski, W. Crutchfield, and J. B. Bell. Parallelization of structured, hierarchical adaptive mesh refinement algorithms. Computing and Visualization in Science, 3, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ralf Deiterding
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations