Introducing Enzo, an AMR Cosmology Application

  • Brian W. O’shea
  • Greg Bryan
  • James Bordner
  • Michael L. Norman
  • Tom Abel
  • Robert Harkness
  • Alexei Kritsuk
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 41)


In this paper we introduce Enzo, a 3D MPI-parallel Eulerian block-structured adaptive mesh refinement cosmology code. Enzo is designed to simulate cosmological structure formation, but can also be used to simulate a wide range of astrophysical situations. Enzo solves dark matter N-body dynamics using the particle-mesh technique. The Poisson equation is solved using a combination of fast fourier transform (on a periodic root grid) and multigrid techniques (on non-periodic subgrids). Euler’s equations of hydrodynamics are solved using a modified version of the piecewise parabolic method. Several additional physics packages are implemented in the code, including several varieties of radiative cooling, a metagalactic ultraviolet background, and prescriptions for star formation and feedback. We also show results illustrating properties of the adaptive mesh portion of the code. Information on profiling and optimizing the performance of the code can be found in the contribution by James Bordner in this volume.


Dark Matter Smooth Particle Hydrodynamic Adaptive Mesh Smooth Particle Hydrodynamic Dark Matter Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. Monaghan. Smoothed particle hydrodynamics. Annual Review of Astronomy & Astrophysics, 30:543, 1992.CrossRefGoogle Scholar
  2. 2.
    M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys., 82:64–84, 1989.CrossRefGoogle Scholar
  3. 3.
    G. L. Bryan and M. L. Norman. A hybrid amr application for cosmology and astrophysics. In N. Chrisochoides, editor, Workshop on Structured Adaptive Mesh Refinement Grid Methods, page 165. IMA Volumes in Mathematics No. 117, 2000.Google Scholar
  4. 4.
    G. L. Bryan and M. L. Norman. In D. A. Clarke and M. Fall, editors, Computational Astrophysics; 12th Kingston Meeting on Theoretical Astrophysics, proceedings of meeting held in Halifax; Nova Scotia; Canada October 17–19; 1996. ASP Conference Series # 123, 1997.Google Scholar
  5. 5.
    G. L. Bryan. Fluids in the universe: Adaptive mesh in cosmology. Computing in Science and Engineering, 1:2:46, 1999.MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. L. Norman and G. L. Bryan. Cosmological adaptive mesh refinement. In Kohji Tomisaka Shoken M. Miyama and Tomoyuki Hanawa, editors, Numerical Astrophysics: Proceedings of the International Conference on Numerical Astrophysics 1998 (NAP98), held at the National Olympic Memorial Youth Center, Tokyo, Japan, March 10–13, 1998., page 19. Kluwer Academic, 1999.Google Scholar
  7. 7.
    P. R. Woodward and P. Colella. A piecewise parabolic method for gas dynamical simulations. J. Comp. Physics, 54:174, 1984.MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. L. Bryan, M. L. Norman, J. M. Stone, R. Cen, and J. P. Ostriker. A piecewise parabolic method for cosmological hydrodynamics. Comp. Phys. Comm., 89:149–168, 1995.CrossRefGoogle Scholar
  9. 9.
    J. M. Stone and M. L. Norman. Zeus-2d: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. i-the hydrodynamic algorithms and tests. ApJ, 80:753, 1992.CrossRefGoogle Scholar
  10. 10.
    J. M. Stone and M. L. Norman. Zeus-2d: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. ii. the magnetohydrodynamic algorithms and tests. ApJ, 80:791, 1992.CrossRefGoogle Scholar
  11. 11.
    T. Abel, P. Anninos, Y. Zhang, and M. L. Norman. Modeling primordial gas in numerical cosmology. New Astronomy, 2:181–207, August 1997.CrossRefGoogle Scholar
  12. 12.
    P. Anninos, Y. Zhang, T. Abel, and M. L. Norman. Cosmological hydrodynamics with multi-species chemistry and nonequilibrium ionization and cooling. New Astronomy, 2:209–224, August 1997.CrossRefGoogle Scholar
  13. 13.
    M. Rauch. The Lyman Alpha Forest in the Spectra of QSOs. Annual Review of Astronomy and Astrophysics, 36:267–316, 1998.CrossRefGoogle Scholar
  14. 14.
    F. Haardt and P. Madau. Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background. ApJ, 461:20–+, April 1996.CrossRefGoogle Scholar
  15. 15.
    R. Cen and J. P. Ostriker. Galaxy formation and physical bias. ApJL, 399:L113–L116, November 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Brian W. O’shea
    • 1
  • Greg Bryan
    • 2
  • James Bordner
    • 1
  • Michael L. Norman
    • 1
  • Tom Abel
    • 3
  • Robert Harkness
    • 4
  • Alexei Kritsuk
    • 1
  1. 1.Laboratory for Computational Astrophysics at the Center for Astrophysics and Space SciencesUniversity of California at San DiegoUSA
  2. 2.Department of PhysicsUniversity of OxfordOxfordUK
  3. 3.Department of Astronomy and AstrophysicsPenn State UniversityUSA
  4. 4.San Diego Supercomputing Center, UCSDLa JollaUSA

Personalised recommendations