Advertisement

AMR for low Mach number reacting flow

  • John Bell
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 41)

Summary

We present a summary of recent progress on the development and application of adaptive mesh refinement algorithms for low Mach number reacting flows. Our approach uses a form of the low Mach number equations based on a general equation of state that discretely conserves both mass and energy. The discretization methodology is based on a robust projection formulation that accommodates large density contrasts. The algorithm supports modeling of multicomponent systems and incorporates an operator-split treatment of stiff reaction terms. The basic computational approach is embedded in an adaptive projection framework that uses structured hierarchical grids with subcycling in time that preserves the discrete conservation properties of the underlying single-grid algorithm. We present numerical examples illustrating the application of the methodology to turbulent premixed combustion and nuclear flames in type Ia supernovae.

Keywords

Mach Number Coarse Grid Adaptive Mesh Lawrence Berkeley National Laboratory Species Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. Welcome. A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. J. Comput. Phys., 142:1–46, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. 142:1–46, May 1998.MathSciNetzbMATHGoogle Scholar
  3. 3.
    R. Becker, M. Braack, and R. Rannacher. Numerical simulation of laminar flames at low mach number by adaptive finite elements. Combust. Theory Modelling, 3:503–534, 1999.CrossRefzbMATHGoogle Scholar
  4. 4.
    J. B. Bell, M. S. Day, A. S. Almgren, M. J. Lijewski, and C. A. Rendleman. A parallel adaptive projection method for low Mach number flows. Int. J. Numer. Meth. Fluids, 40:209–216, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and M. A. Zingale. Adaptive low mach number simulations of nuclear flames. Technical Report LBNL-52395, Lawrence Berkeley National Laboratory, March 2003. to appear in J. Comp. Phys.Google Scholar
  6. 6.
    J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and M. A. Zingale. Direct numerical simulations of type ia supernovae flames ii: The rayleigh-taylor instability. Technical Report LBNL-54300, Lawrence Berkeley National Laboratory, January 2004. submitted Astrophysical Journal.Google Scholar
  7. 7.
    J. B. Bell, M. S. Day, I. G. Shepherd, M. Johnson, R. K. Cheng, V. E. Beckner, M. J. Lijewski, and J. F. Grcar. Numerical simulation of a laboratory-scale turbulent v-flame. Technical Report LBNL-54198, Lawrence Berkeley National Labortory, 2003. submitted Proceedings of the Combustion Institute.Google Scholar
  8. 8.
    J. B. Bell and D. L. Marcus. A second-order projection method for variable density flows. 101(2):334–348, August 1992.MathSciNetzbMATHGoogle Scholar
  9. 9.
    B. A. V. Bennett, C. S. McEnally, L. D. Pfefferle, and M. D. Smooke. Computational and experimental study of axisymmetric coflow partially premixed methane/air flames. Combust. Flame, 123:522–546, 2000.CrossRefGoogle Scholar
  10. 10.
    B. A. V. Bennett and M. D. Smooke. Local rectangular refinment with application to axisymmetric laminar flames. Combust. Theory Modelling, 2:221–258, 1998.CrossRefzbMATHGoogle Scholar
  11. 11.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. Wiley, New York, 2 edition, 2002.Google Scholar
  12. 12.
    P. N. Brown, G. D. Byrne, and A. C. Hindmarsh. VODE: A variable coefficient ode solver. SIAM J. Sci. Stat. Comput., 10:1038–1051, 1989.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    P.J. Coelho and J.C.F. Pereira. Calculation of a confined axisymmetric laminar diffusion flame using a local grid refinement technique. Combust. Sci. Tech., 92:243–264, 1993.Google Scholar
  14. 14.
    T. P. Coffee and J. M. Heimerl. Transport algorithms for premixed laminar steady-state flames. Comb. Flame, 43:273, 1981.CrossRefGoogle Scholar
  15. 15.
    M. S. Day and J. B. Bell. Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theory Modelling, 4:535–556, 2000.CrossRefzbMATHGoogle Scholar
  16. 16.
    H.C. de Lange and L.P.H. de Goey. Numerical modeling in a locally refined grid. Int. Jour. Num. Mech. Eng., 37:497–515, 1994.CrossRefzbMATHGoogle Scholar
  17. 17.
    V. Giovangigli. Convergent iterative methods for multicomponent diffusion. IMPACT Comput. Sci. Engrg., 3:244–276, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces. Physics of Fluids, 8:2182–2189, 1965.CrossRefGoogle Scholar
  19. 19.
    J. Hilditch and P. Colella. A front tracking method for compressible flames in one dimension. SIAM J. Sci. Comput., 16:755–772, 1995.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rudolf Kippenhahn and Alfred Weigert. Stellar Structure and Evolution. Springer Verlag, 1992.Google Scholar
  21. 21.
    M. F. Lai. A Projection Method for Reacting Flow in the Zero Mach Number Limit. PhD thesis, University of California at Berkeley, 1993.Google Scholar
  22. 22.
    M. F. Lai, J. B. Bell, and P. Colella. A projection method for combustion in the zero Mach number limit. In Proceedings of the Eleventh AIAA Computational Fluid Dynamics Conference, pages 776–783, 1993.Google Scholar
  23. 23.
    A. Majda and J. A. Sethian. The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Tech., 42:185–205, 1985.Google Scholar
  24. 24.
    R.M.M. Mallens, H.C. de Lange, C.H.J. van de Ven, and L. P. H. de Goey. Modeling of confined and unconfined laminar premixed flames on slit and tube burners. Combust. Sci. Tech., 107:387–401, 1995.Google Scholar
  25. 25.
    P.A. McMurtry, W.-H. Jou, J.J. Riley, and R.W. Metcalfe. Direct numerical simulations or a reacting mixing layer with chemical heat release. AIAA J., 24:962, 1986.CrossRefGoogle Scholar
  26. 26.
    H.N. Najm, R.W. Schefer, R.B. Milne, C.J. Mueller, K.D. Devine, and S.N. Kempka. Numerical and experimental investigation of vortical flow—flame interaction. Technical Report SAND98-8232, Sandia National Laboratory, February 1998.Google Scholar
  27. 27.
    R. B. Pember, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. Lai. A higher-order projection method for the simulation of unsteady turbulent nonpremixed combustion in an industrial burner. Transport Phenomena in Combustion, pages 1200–1211, 1996. Taylor and Francis.Google Scholar
  28. 28.
    R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland, and J. P. Jessee. An adaptive projection method for unsteady, low-Mach number combustion. Comb. Sci. Tech., 140:123–168, 1998.Google Scholar
  29. 29.
    R. G. Rehm and H. R. Baum. The equations of motion for thermally driven buoyant flows. N. B. S. J. Res., 83:297–308, 1978.zbMATHGoogle Scholar
  30. 30.
    Charles A. Rendleman, Vincent E. Beckner, Mike Lijewski, William Y. Crutchfield, and John B. Bell. Parallelization of structured, hierarchical adaptive mesh refinement algorithms. Computing and Visualization in Science, 3(3):147–157, 2000.CrossRefzbMATHGoogle Scholar
  31. 31.
    L. T. Somers and L. P. H. de Goey. A numerical study of a premixed flame on a slit burner. Combust. Sci. Tech., 108:121–132, 1995.Google Scholar
  32. 32.
    Frank X. Timmes. The physical properties of laminar helium deflagrations. Astrophysical Journal, 528:913, 2000.CrossRefGoogle Scholar
  33. 33.
    Frank X. Timmes and F. Douglas Swesty. The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the helmholtz free energy. Astrophysical Journal Supplement, 126:501–516, 2000.CrossRefGoogle Scholar
  34. 34.
    M. D. Smooke A. A. Turnbull,, R. E. Mitchell, and D. E. Keyes. Solution of two-dimensional axisymmetric laminar diffusion flames by adaptive boundary value methods. In Mathematical Modeling in Combustion and Related Topics, pages 261–300, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • John Bell
    • 1
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations