Anisotropic mesh adaptivity in CFD

  • Stefano Micheletti
  • Simona Perotto
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 41)


Posteriori Error Posteriori Error Estimator Anisotropic Mesh Posteriori Analysis Reference Patch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Book Series: Advances in Numerical Mathematics, Teubner, Stuttgart (1999)Google Scholar
  2. 2.
    Apel, L., Lube, G.: Anisotropic mesh refinement in stabilized Galerkin methods. Numer. Math., 74, 261–282 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, 10, 1–102 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brezzi, F., Russo, A.: Choosing bubbles for advection-diffusion problems. Math. Models Methods Appl. Sci., 4, 571–587 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ciarlet, Ph.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978)zbMATHGoogle Scholar
  6. 6.
    Clément, Ph.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér., 2, 77–84 (1975)zbMATHGoogle Scholar
  7. 7.
    Courty, F., Leservoisier, D., George, P.L., Dervieux, A.: Continuous metrics and mesh optimization. Submitted for publication in Appl. Numer. Math. (2003)Google Scholar
  8. 8.
    Darmofal, D.L., Venditti, D.A.: Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows. J. Comput. Phys., 187, 22–46 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Eriksson, K., Johnson, C.: Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems. Math. Comput., 60, 167–188 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Formaggia, L., Perotto, S.: New anisotropic a priori error estimates. Numer. Math., 89, 641–667 (2001)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Formaggia, L., Perotto, S., Zunino, P.: An anisotropic a-posteriori error estimate for a convection-diffusion problem. Comput. Visual. Sci., 4, 99–104 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Formaggia, L., Perotto, S.: Anisotropic error estimates for elliptic problems. Numer. Math., 94, 67–92 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Formaggia, L., Micheletti, S., Perotto, S.: Anisotropic mesh adaptation in Computational Fluid Dynamics: application to the advection-diffusion-reaction and the Stokes problems. Submitted for publication in Mathematics and Computers in Simulation (2003)Google Scholar
  14. 14.
    Hecht, F.: BAMG: bidimensional anisotropic mesh generator. http://wwwrocq. (1998)Google Scholar
  15. 15.
    Kunert, G.: A Posteriori Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes. Ph.D. thesis, Fakultät für Mathematik der Technischen Universität Chemnitz, Chemnitz (1999)Google Scholar
  16. 16.
    Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Volume I, Springer-Verlag, Berlin (1972)Google Scholar
  17. 17.
    Micheletti, S., Perotto, S., Picasso, M.: Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection-diffusion and Stokes problems. SIAM J. Numer. Anal., 41 No. 3, 1131–1162 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Picasso, M.: An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: application to elliptic and parabolic problems. SIAM J. Sci. Comput., 24 No. 4, 1328–1355 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Siebert, K.G.: An a posteriori error estimator for anisotropic refinement. Numer. Math., 73, 373–398 (1996)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefano Micheletti
    • 1
  • Simona Perotto
    • 1
  1. 1.MOX, Modeling and Scientific Computing, Department of MathematicsPolitecnico of MilanoMilanoItaly

Personalised recommendations