Advertisement

Temporal Gravity Variations in GOCE Gradiometric Data

  • F. Jarecki
  • J. Müller
  • S. Petrovic
  • P. Schwintzer
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 129)

Abstract

The accuracy and spatial resolution expected from GOCE gravity gradiometry might deteriorate due to temporal gravity variations, which are mainly induced by mass redistributions in the System Earth. These mass redistributions occur in the atmosphere at various time scales, in the oceans as ocean tides and currents and on the continents as solid Earth tides, loading and hydrological effects. Opposite to GRACE, GOCE is developed to measure the static gravity field. Therefore, any time variable effects have to be removed from the measured data prior to further processing in a dealiasing step.

In this report the effects mentioned above are analysed by means of available models in order to investigate if they deliver significant contributions to the GOCE gradiometer measurements. Simulations of the different system parts (Atmosphere, Hydrosphere, Cryosphere and Solid Earth) are run. The gravitational effect of the simulated mass changes is expanded into spherical harmonics from which gravitational gradients are computed along a simulated GOCE orbit. The resulting gradients are compared with the specifications of the GOCE gradiometer. Furthermore, the residual (i.e. atmospheric and oceanic parts removed) time variable part of the gravity field as detected by GRACE is discussed with respect to its impact on GOCE gradiometry.

Keywords

gravity satellite mission GOCE GRACE gravity gradiometry global hydrological model temporal gravity field variations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrikosov, O., Schwintzer, P., 2004. Recovery of the Earth’s Gravity Field from GOCE Satellite Gravity Gradiometry: a Case Study. GOCE, The Geoid and Oceanography. ESA-SP569, ESA Publications Division, Nordwijk.Google Scholar
  2. Ditmar, P., Klees, R., 2002. A Method to Compute the Earth’s Gravity Field from SGG/SST Data to be Acquired by the GOCE Satellite. DUP Science, Delft.Google Scholar
  3. Döll, P., Kaspar, F., Lehner, B., 2003. A global hydrological model for deriving water availability indicators: model tuning and validation. J. Hydrol. 270, 105–134.CrossRefGoogle Scholar
  4. ESA, 1999. Gravity Field and Steady-State Ocean Circulation Explorer, Reports for Assessment: The Four Candidate Earth Explorer Core Missions, ESA-SP1233(1), ESA Publications Division, Nordwijk.Google Scholar
  5. Fan, Y., Van den Dool, H., 2004. The CPC global monthly soil moisture data set at 1/2 degree resolution for 1948-present. J. Geophys. Res. 109, D10102, doi:1029/2003JD004345.CrossRefGoogle Scholar
  6. Flechtner, F., 2003. AOD1B Product Description Document. GRACE Project Documentation, JPL 327-750, Rev. 1.0, JPL Pasadena, Ca.Google Scholar
  7. Flechtner, F., 2004. GRACE Science Data System Monthly Report January 2004. GRACE Information System and Data Center, GFZ Potsdam.Google Scholar
  8. Han, S.-C, Jekeli, C, Shum, C. K., 2004. Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J. Geophys. Res. 109, B 04403, doi:10.1029/2003/JB002501.Google Scholar
  9. Huang, J., Van den Dool, H. M., Georgakakos, K. P., 1996. Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. of Climate 9, 1350–1362.CrossRefGoogle Scholar
  10. Jarecki, F, Müller, J., Petrovic, S., Schwintzer, P., 2005. Temporal Gravity Variations in GOCE Gradiometric Data. In: Proceedings of the Gravity, Geoid and Space Missions GGSM2004 IAG International Symposium, Porto, Portugal, August 30th to September 3rd, 2004. CD-ROM.Google Scholar
  11. Milly, P. C. D., Shmakin, A. B., 2002. Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) Model, J. of Hydrometeorology 3(3), 283–299.CrossRefGoogle Scholar
  12. Müller, J., 2003. GOCE gradients in various reference frames and their accuracies. Adv. in Geosciences 1, 33–38.Google Scholar
  13. Pail, R., 2004. GOCE Quick-Look Gravity Field Analysis: Treatment of Gravity Gradients Defined in the Gradiometer Reference Frame. GOCE, The Geoid and Oceanography. ESA-SP569, ESA Publications Division, Nordwijk.Google Scholar
  14. Sasgen, I., 2004. Geodetic signatures of glacial changes in Antarctica: Rates of geoid-height change and radial displacement due to present and past ice-mass variations. Diploma thesis, GFZ Potsdam.Google Scholar
  15. Schmidt, R., Schwintzer, P., Flechtner, F., Reigber, Ch., Güntner, A., Doll, P., Ramillien, G., Cazenave, A., Petrovic, S., Jochmann, H., Wünsch, J., 2004. GRACE Observations of Changes in Continental Water Storage. Submitted to Global and Planetary Change.Google Scholar
  16. Thompson, P. F, Bettadpur, S. V, Tapley, B. D., 2004. Impact of short period, non-tidal, temporal mass variability on GRACE gravity anomalies. Geophy. Res. Lett. 31, L06619, doi:10.1029/2003GL019285.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • F. Jarecki
    • 1
  • J. Müller
    • 1
  • S. Petrovic
    • 2
  • P. Schwintzer
    • 2
  1. 1.Institut für ErdmessungUniversität HannoverHannoverGermany
  2. 2.Department 1: “Geodesy and Remote Sensing”GeoForschungsZentrum PotsdamPotsdamGermany

Personalised recommendations